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Abstract

Global Navigation Satellite System (GNSS) signals are vul-
nerable to intentional or unintentional Radio Frequency In-
terference (RFI) sources. Since GNSS is used in numer-
ous critical services, it is of interest to accurately localise
and track the RFI source to take further actions. This paper
explores the possibility of implementing the Particle Filter
for localising a moving GNSS RFI source using Angle of
Arrival (AOA) and Time Difference of Arrival (TDOA) ob-
servations. The performance of the Particle Filter and the
Single Propagation Unscented Kalman Filter (SPUKF) are
compared in this context in terms of estimation accuracy,
the standard deviation in error and the processing time.

1 Introduction

Modern infrastructure and a plethora of services rely on
the timing and positioning capabilities provided by the
Global Navigation Satellite Systems (GNSS), in particu-
lar, the Global Position System (GPS). However, the low
received power level makes the GNSS signals susceptible
to Radio Frequency Interference (RFI) either from non-
intentional or intentional sources [1,2]. Hence, relatively
weak RFI can jam GNSS signals and receivers, degrading
or completely disrupting the functioning of the systems that
rely on GNSS [3-5]. Therefore, GNSS itself has become a
critical infrastructure which must be protected.

As the RFI source is unknown a priori, passive localization
systems that typically use Received Signal Strength (RSS),
source Angle of Arrival (AOA), Time Difference of Arrival
(TDOA) or a combination of AOA/TDOA or Frequency
Difference of Arrival (FDOA) to estimate the RFI position
are needed [6]. One such system which combines AOA and
TDOA processing to detect and localize RFI is the GNSS
Environmental Monitoring System (GEMS) [7, 8], the pre-
cursor to the GRIFFIN system used in this paper.

Our initial work [9] looked at the performance of the
Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF) and the Single Propagation Unscented Kalman Filter
(SPUKEF) for RFI source geo-localization and tracking. It
was observed that the SPUKF provides better performance
in terms of estimation accuracy, confidence and processing
time compared to the EKF, UKF and the snap-shot meth-
ods for a stationary RFI source or an RFI source moving at

a constant speed. In this paper, we explore the possibility of
using the Particle Filter for tracking a moving RFI source
to obtain a higher estimation accuracy and confidence.

The paper is organised as follows: Section 2 provides a
brief overview of the GRIFFIN system and describes the
experimental setup. The Particle Filter is briefly described
in Section 3. The system and observation model formula-
tion are also provided. The performance of the Particle Fil-
ter for RFI source tracking is provided and compared with
the SPUKEF in Section 4. Conclusions and future work are
given in Section 5

2 Experimental Setup

The GRIFFIN system consists of several spatially dis-
tributed Sensor Nodes (SNs), each incorporating a custom-
designed multi-element circular antenna array, connected
to a Central Node (CN) to quickly detect and geo-locate
RFI(s) through hybrid AOA measurements at each SN and
TDOA measurements between SNs. If an RFI is detected,
the AOA to the RFI is established and each SN steers a
beam at the RFI improving the Signal-to-Noise Ratio (SNR)
in the proceeding TDOA processing at the CN, enhancing
the accuracy over using the AOA and TDOA approaches
independently.
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Figure 1. Field-trial Set-up

A network of three prototype GRIFFIN SNs, incorporat-
ing an 8-element antenna array, were spatially distributed



across a 400 x 800m area with system performance eval-
vated using various narrow- and wide-band interference
sources as shown in Figure 1. The interference source
power levels were set so as not to disrupt users outside the
boundary of the trial area and GNSS monitoring stations
were set-up at the perimeter to monitor the signal levels.
In this work, we consider a dynamic RFI source, with the
ground truth along with some of the trees shown in Figure 1.
The ground truth data was obtained using a GNSS L1/L2-
base station and a GPS RTK rover, and the locations of the
SNs were surveyed prior to the field-trial allowing for a less
ambiguous evaluation of the geo-localization performance
that is being achieved.

3 Particle Filter Implementation

The Particle Filter is a recursive Bayesian Estimator which
approximates the Probability Density Function (PDF) of a
stochastic state vector using a set of a finite number of ran-
dom sample state vectors [10]. A large number of sam-
ples are required to accurately represent the PDF. Each of
the random sample state vectors is propagated to compute
the a priori samples at the next observation epoch. The
weight corresponding to each sample state vector is com-
puted using a likelihood function corresponding to the ob-
servation(s) and the weighted average of the propagated
samples are considered as the a posteriori mean state vec-
tor.

For implementing the Particle Filter for GNSS RFI source
tracking problem, the AOA bias, clock bias and drifts be-
tween SN are also estimated in addition to the position and
velocity of the RFI source. Accordingly, the state vector for
this estimation problem is defined as [9]:
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Here, r and v are the position and velocity vectors of the
RFI source, by;; is the clock bias and d;; is the clock drift
respectively for the i/ and j** sensor nodes and by, is the
AOA bias for the i sensor node. Considering the clock
biases, drifts and AOA biases as constants, the dynamic
model can be written as
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and a; is the unknown acceleration vector and v (¢) is the
process noise vector.

The AOA observation 0; from the i node and the TDOA
measurement O0f;; between the i"" and j sensor nodes at

the k" time instant can be expressed as
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where x; and y; are the x- and y-coordinate of the i sensor
node, 7, (k) is the AOA measurement noise, r; and r; are
the position vectors of the i/ and j* sensor nodes respec-
tively and nr (k) is the TDOA measurement noise.

The PDF for the state vector is assumed Gaussian and ac-
cordingly, 2000 sample state vectors are drawn from the
initial PDF assumption. Each of the 2000 samples was
individually propagated by integrating equation (7). The
weight corresponding to each sample was generated as per
the sequential importance sampling algorithm [11] and in
the case of degeneracy, re-sampling was performed [11].

4 Results and Discussion

Using the methodology described in section 3 the position
of a moving GNSS RFI source was estimated using the
Particle Filter. As mentioned earlier that the motivation
for using the Particle Filter in this problem was to explore
the possibility of improving the tracking performance for
the case of moving RFI source. In the earlier work [9] it
was observed that the SPUKF provides better performance
in terms of accuracy, uncertainty and processing time for
a GNSS RFI source localisation for the stationary case or
when the RFI source is moving at a constant speed. Hence
it is of interest to compare the performance of the SPUKF
and the Particle Filter in this context.

Figure 2 shows the AOA and TDOA observations when the
RFI source is moving at a constant speed along the x-axis.
It can be observed that at some time instants the AOA and
TDOA observations are unavailable due the obstructions.

The estimation errors and corresponding standard devia-
tions along the x- and y-axis for the SPUKF is shown in Fig-
ure 3 [9]. It can be observed that the SPUKF provides the
estimation solution with higher confidence than the snap-
shot i.e. Least Square method when the target is moving
at a constant speed [9]. However, the SPUKF is unable to
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Figure 2. AOA and TDOA
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Figure 4. SPUKF X-Y position
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track the RFI source when the source starts accelerating.
This can be observed in Figure 4.

The position estimation error and standard deviation for the
Particle Filter algorithm are shown in Figure 5 when the
RFI source is moving at a constant speed. It can be ob-
served that the overall uncertainty in the solution is reduced
due to the reduction in the standard deviation, compared to
the snap-shot method.

The RFI source position estimated by the Particle Filter for
the entire duration of the experiment is shown in Figure 6.
One can conclude from Figures 4 and 6 that the Particle Fil-
ter solution is better than the SPUKF in terms of tracking
performance. However, the Particle Filter solution is not
as accurate as of the snap-shot method in terms of track-
ing the target, in this case. This is predominantly due to
the unavailability of acceleration information in the system
model.

The average estimation error, average standard deviation
and the processing time per time step for the SPUKF and
the Particle Filter are summarised in Table 1. It should be
noted that the processing time for the Particle Filter is sig-
nificantly higher than the SPUKF and it is anticipated that
with an increased number of particles the processing time
will increase further.

From the results presented above, it can be concluded that
the traditional Particle Filter is not the most suitable solu-
tion to obtain a position estimation with higher confidence
for the GNSS RFI source tracking. Additionally, the pro-
cessing time is significantly higher than the SPUKF based
solution. However, it is also observed that the Particle Filter
based solution can reduce the solution standard deviation
and hence increases the precision.

Table 1. SPUKF and Particle Filter comparison

Average  Average Processing

Error (m) o (m) time (ms)
SPUKF 8.359 4.152 6.195
Particle Filter  8.395 7.988 783.9
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5 Conclusion

A Particle Filter based GNSS RFI source localisation is pre-
sented. It is observed that the Particle Filter based method
improves upon the SPUKF method in terms of better track-
ing of the moving RFI source. However, the solution is not
better compared to the snap-shot method, predominantly
due to the unavailability of the target acceleration infor-
mation to the system. Additionally, the Particle Filter ap-
proach requires significantly higher processing time. It is
anticipated that a model-predictive approach can be utilised
to estimate the source acceleration and the dynamic model
can be updated accordingly at every time step in the Par-
ticle Filter to address the error due to the unavailability of
the acceleration information. Further, the Extrapolated Sin-
gle Propagation Technique [12] can be used in the Particle
Filter to reduce the computation time significantly.
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