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Abstract 

 
We report in this paper a first principles, 

multipole-based cable braid 

electromagnetic penetration model. We 

apply this formulation to the case of a one-

dimensional array of wires, which can be 

modeled analytically via a multipole-

conformal mapping expansion for the wire 

charges and extension by means of 

Laplace solutions in bipolar coordinates. 

We analyze both electric and magnetic 

penetrations and compare results from the 

first principles cable braid electromagnetic 

penetration model to those obtained using 

the multipole-conformal mapping 

expansion method. We find results in very 

good agreement when using up to the 

octopole moment (for the first principles 

model), covering a dynamic range of 

radius-to-half-spacing ratio up to 0.6. 

These results give us the confidence that 

our first principles model works within the 

geometric characteristics of many 

commercial cables.  

 

1. Introduction 

 
This paper discusses a first principles, 

multipole-based cable braid 

electromagnetic penetration model [1-4]. 

Canonic parameters are usually used to 

model a shielded cable [1, 2, 5-9]: some 

model the shield properties related to the 

braid weave characteristics and material, 

namely the per-unit length transfer 

impedance TZ  (proportional to the transfer 

inductance TL  and resistance TR ) and 

transfer admittance TY  (proportional to the 

transfer capacitance TC ). Other important 

parameters are the per-unit length (series) 

self-impedance cZ  and (shunt) self-

admittance cY , which are formed by the 

inner conductor and the shield.  

 

Our goal here is to apply for the first time 

a first principles model [1-4] that delivers 

results based on the geometrical 

parameters of the cable in question. In this 

paper, we will confirm our first principles 

model against a canonical structure, 

namely a one-dimensional array of wires, 

or wire grid, which can be modeled 

analytically via a multipole-conformal 

mapping expansion for the wire charges 

and extension by means of Laplace 

solutions in bipolar coordinates [10, 11].  

 

2. One-Dimensional Array of Wires: 

Electric Penetration 

 

The problem of field leakage through an 

array of cylinders is the basic canonical 

periodic shield [12]. When the cylinder 

radius is small compared with the spacing, 

simple approximate solutions to this 

problem can be found [7, 13, 14].  

 

We consider here the effects of line 

multipole additions to the simple filament 

approximation in representing the 

elements of a one-dimensional wire grid 

array shown in Fig. 1. We look at the limit 

of small wire radius a (as well as general 

ratios of wire radius to wire half spacing 

w) to determine which of the existing 

approximations to the wire array transfer 

elastance (the inverse of capacitance [14]) 



is most accurate. We also construct a 

simple and accurate uniform 

approximation using the simple conformal 

mapping filament approximation along 

with the decay factor from the solution to 

Laplace’s equation in bipolar coordinates 

[11, 15].  

 

 

Figure 1. A one-dimensional array of wires 

with wire radius a and period 2w.  

 

The array of wires in Fig. 1 is periodic in x 

(one wire is positioned at x = 0) and all 

wires are parallel with the z axis, each 

having a line charge density q with wire 

spacing 2w and wire radius a. The transfer 

elastance of the grid can be defined by 

( ) ( )wEwwqS ccc 002 εφφ ==  [11], where cφ  is 

the difference of the electric potential at 

the point +∞→y  and a point on the wire, 

say at 0=x , ay =  or at ax = , 0=y . The 

simple small radius a approximation [11], 

denoted as thin wire leads to 
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When the cylinders are closely spaced, the 

attenuation resulting from the region 

between cylinders is difficult to represent 

by means of the multipole expansion. To 

treat this problem, a “smoothed” 

conformal transformation was used [14], 

leading to  

 

 
( ) ( ) .1

2
cscln2 0, 

















+= λ
π

πε
w

a
wS scc  (2) 

The “smoothed” conductor solution is a 

good approximation to the cylinder only 

when the conductors are not in close 

proximity. We construct an accurate 

approximation to the elastance using a 

solution to Laplace’s equation in bipolar 

coordinates [15] which holds for all ratios 

of radius to spacing and is given by [11] 
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Figure 2. The transfer elastance of a wire grid 

computed versus the ratio a / w. The black 

lines pertain to Eqs. (1)-(3). The dark grey 

lines pertain to the first principles electric 

multipole penetration model up to order M = 0 

(filament), 1 (dipole), 2 (quadrupole), 3 

(octopole). 

 

The three transfer elastances in Eqs. (1-3) 

are reported in Fig. 2. One can see that 

twcS ,  in Eq. (1) is the least accurate; better 

accuracy is obtained with sccS ,  in Eq. (2); 

finally, the best accuracy is achieved with 

bscS ,  in Eq. (3). 

 

The cable penetration model is based on 

electric multipoles. We determine 0Ecφ  

by solving for the potential surrounding a 

periodic cell of the structure [1, 2]. The 

drive potential in the planar problem will 

be taken as yEinc 0−=φ  where 0=y  is at 

the center of the structure. It is efficient to 



represent the electric scalar potential by an 

electric multipole summation to capture 

the transverse field behavior. The lattice 

parameters are used to image the potential 

contribution of an axially varying line 

charge ( )sq , discretized as pulses of 

strength nq  in one periodic cell over the 

planar structure model. We include a series 

of line multipole moments in the potential, 

which for a given position n, is written as 
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and the total potential is 
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φφ . The final matching 

equation to determine the M2  multipole 

moments on each of N segments imposes 

the constant φφφ ==+ 'ninc
tot
scatt V . Once the 

potential φ  is found, with the potential on 

the braid taken to vanish, 0' =nV , we can 

proceed to find the asymptotic potential 

constant behaviors of interest. For the 

shadow side of the structure, we evaluate a 

total potential far from the braid to find 

cφφ → . Normalizing by the drive field 0E , 

we find the desired 0Ecφ .  

 

Using 0Ecφ  and considering up to order 

M = 0 (filament), 1 (dipole), 2 

(quadrupole), 3 (octopole), we plot in Fig. 

2 the transfer elastance versus wa  as dark 

grey curves. One can notice that the 

agreement with bscS ,  is best when using up 

to the octopole moment, covering a 

dynamic range of up to 6.0=wa .  

 

3. One-Dimensional Array of Wires: 

Magnetic Penetration 
 

This is a dual problem to the electric 

penetration model of an array of wires 

discussed in Sec. 2 [10]. One can achieve 

analytical expressions similar to Eqs. (1)-

(3) also in this case, and the three transfer 

inductances are reported in Fig. 3. Again, 

the best accuracy is achieved with the 

bipolar solution.  

 

The cable penetration model is based on 

magnetic multipoles [1, 2]. Considering up 

to order M = 3 (octopole), we plot in Fig. 3 

the transfer inductance versus wa  as dark 

grey curve. One can notice that the 

agreement with the bipolar solution is best 

up to 6.0=wa .  

 

 

Figure 3. The transfer inductance versus the 

ratio a / w. The black lines pertain to dual 

expressions to Eqs. (1)-(3). The dark grey line 

pertains to the first principles magnetic 
multipole penetration model up to order M = 3 

(octopole). 

 

4. Conclusion 

 

We have reported a first principles, 

multipole-based cable braid 

electromagnetic penetration model. We 

have studied the case of a one-dimensional 

array of wires for which we report 

modeling based on a multipole-conformal 

mapping bipolar solution for the wire 

elastance. We compared the transfer 

electric and magnetic parameters from the 

first principles penetration model to the 

ones obtained using the analytical method. 

These results were found in good 

agreement up to a radius to half spacing 

ratio of 0.6, within the characteristics of 

many commercial cables. Our proposed 
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first principles multipole model accounts 

for the dependence on the actual cable 

geometry. 
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