32nd URSI GASS, Montreal, 19-26 August 2017

Scattering Properties of a Finite Array of Magnetized Plasma Cylinders at the Surface Plasmon
Resonances

Alexander V. Ivoninsky*, Alexander V. Kudrin, and Vasiliy A. Es’kin
University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia

Abstract

The scattering properties of a finite array of magnetized
plasma cylinders are studied theoretically by using the mul-
tiple scattering approach. It is assumed that the array,
whose elements are aligned with an external static magnetic
field and located equidistantly in free space, is illuminated
by an obliquely incident H-polarized plane electromagnetic
wave. The far-zone scattering patterns for the array con-
sisting of a relatively large but finite number of cylinders
are analyzed in the case where the individual and collec-
tive mechanisms of resonance scattering are pronounced in
such a system. Numerical calculations performed in the
radio-frequency range demonstrate promising prospects for
controlling the scattering characteristics of plasma-based
arrays near the frequencies of plasmon resonances of their
cylindrical elements.

1 Introduction

Over the past decade, the problem of creation of plasma an-
tennas and antenna arrays in the radio-frequency (RF) and
microwave ranges has received considerable attention [1—
3]. It was established that the electromagnetic character-
istics of such systems, which often consist of the plasma-
filled tubes, can be similar to the corresponding properties
of their metal analogs [1]. However, plasma antennas may
have some potential advantages over conventional metal an-
tennas due to ability of controlling their electromagnetic
properties by variation in the plasma parameters [2]. In par-
ticular, the influence of an external static magnetic field on
the radiation pattern of the reconfigurable plasma antenna
array has recently been discussed in [3]. It should be men-
tioned that the most of previous studies on the subject are
related to the case where the interaction of electromagnetic
radiation with the plasma elements of the array is nonreso-
nant. At the same time, it should be expected that the case
where resonant scattering effects are present in the system
can be useful in creating the promising plasma-based scat-
tering arrays.

In this work, we analyze theoretically the scattering prop-
erties of a two-dimensional array consisting of a finite
number of parallel, electrically thin, axially magnetized
plasma cylinders, which possess the surface plasmon res-

onances [4, 5]. For this purpose, we study the problem of
resonance scattering of an obliquely incident plane electro-
magnetic wave by such an array and determine the behav-
ior of the far-zone scattered field. For the sake of brevity,
we restrict ourselves to consideration of the special case of
an H-polarized incident plane wave, for which the surface
plasmon resonances of a single magnetized plasma column
are observed for any incidence angle [5].

2 Formulation of the Problem

Consider a planar equidistant array consisting of N identi-
cal, infinitely long, uniform circular cylinders of radius a,
which are filled with a cold collisionless magnetoplasma
and located in free space. The cylinders are aligned with
an external static magnetic field By, which is parallel to
the z axis of a Cartesian coordinate system (x,y,z). The
axes of the cylinders, separated by distance L, lie in the
xz plane and are specified by the relations x = jL and
y=0. Here, j=—-N),...,—1,0,1,...,N), where N(-)
and N(*) are the natural numbers satisfying the condition
N £ NE) 41 =N. Let a monochromatic H-polarized
plane electromagnetic wave with angular frequency @ be
incident on the array at an angle 0 to the z axis so that the
projection of the wave vector k of this wave onto the xy
plane makes an angle y with the x axis. The electric and
magnetic fields of this wave denoted by the superscript (i)
can be written as

E(V) = Ef)i) exp[—iko(gxcos ¥ + gysin y + pz)],
HO) = Hg) exp[—iko(gxcosy +gysiny + pz)]. (1)

Hereafter, ko is the wave number in free space, p = cos 0
and g = sin 6 are the normalized (to ko) longitudinal, i.e.,
cylinder-aligned, and transverse components of the wave
vector k in the incident wave, respectively, and the exp(i®?)
time dependence is dropped. The vector quantities Eé’) and
H(()’> in the H-polarized plane electromagnetic wave are re-
lated by the formula

H) = 7' (qcos yxo +gsin yyo + pzo) x EY,

where E(()i> = Eo(—sinyxg + cos yyy), Zp is the impedance
of free space, and X, yo, and z( are the unit vectors of the
Cartesian coordinate system. In what follows, all the field



quantities will be normalized to the electric-field amplitude
Ey. We will consider the case of electrically thin (in terms
of the free-space wavelength) cylinders in the array where
the inequality kpa < 1 holds.

The cold collisionless magnetoplasma filling the cylinders
is described by the dielectric permittivity tensor of standard
form [6]:
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Here, the tensor elements can be written as

w2

0oy
14 _ 14
777—1_0)2’ (3)

7 (000
where @y and w), are the gyrofrequency and the plasma fre-
quency of electrons, respectively, and &) is the permittivity
of free space. Note that in tensor elements (3), we neglected
the contribution of ions, which is possible under the con-
dition @ > wry, which is assumed throughout this work
(here, @y is the lower hybrid resonance frequency [6]).

The method of solving the above-formulated problem is
based on the multiple scattering technique [7], according to
which the field scattered by an array of cylindrical objects
can be determined if the diffraction characteristics of each
element of this array are known. Following the well-known
field solution of the corresponding scattering problem for a
single magnetized plasma cylinder (see, e.g., [5]), the elec-
tromagnetic field can be represented in terms of azimuthal
harmonics in a local cylindrical coordinate system (p;, ¢;,z)
related to the jth cylinder:

Z E; nexp[—i(m@; + kopz)],

m=—oo

Z H; , exp[—i(m¢; +kopz)],  (4)
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where m is the azimuthal index (m = 0,+1,£2,...). The
quantities E; ,, and H; ,, can be expressed via their longitu-
dinal components E; ,..(p;) and Hj..(p;j), which satisfy
the following equations in the plasma medium [6]:
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In turn, the transverse field components Ejmps Ejmg,
Hjup, and H; ;.4 are expressed via the longitudinal com-

ponents E; .. and Hj ., as
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where A = k; ! [g2 —(p* - 8)2] .

To obtain the corresponding equations for the components
of the vector quantities E;,, and H; ;,, in the surrounding
medium, one should pute =1, g =0, and n =1 in Egs. (5)-
(10). Since the expressions for the transverse field compo-
nents can easily be obtained from Eqgs. (7)-(10) if the lon-
gitudinal field components are known, we will write explic-
itly only the expressions for the quantities E; .., and Hj ..,
inside and outside the cylinders.

The azimuthal harmonics of the longitudinal field compo-
nents inside the jth plasma column, which are solution of
Egs. (5) and (6), are represented in the form [6]
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Here, the superscript (¢) denotes the field transmitting to
the cylinder, J,, is a Bessel function of the first kind of or-

der m, B( ) and B( ) are the amplitude coefficients corre-
spondlng to the a21mutha1 index m for the field inside the
Jjth cylinder, and ¢, (p) stands to denote the normalized (to
ko) transverse wave numbers of two normal waves (k= 1,2)
in a magnetoplasma. Expressions for ¢;(p) can be found
elsewhere [5, 6]. The presence of two transverse wave num-
bers g1 and g, in a magnetoplasma, which correspond to the



same longitudinal wave number p, is related to anisotropic
properties of a magnetized plasma medium, in which two
normal waves, ordinary and extraordinary, are simultane-
ously excited by an obliquely incident plane electromag-
netic wave.

The field outside the plasma cylinders is a superposition
of the incident-wave and scattered fields. The azimuthal
harmonics of the longitudinal components of the field in the
incident H-polarized plane wave in the local coordinates of
the jth cylinder are written as

H) =25 (=" gl n(kogp;) ™Y Foskieos¥) (1)

The field scattered by each cylinder, which is denoted by the
superscript (s), can also be written in terms of cylindrical
functions, and the longitudinal components of its azimuthal
harmonics have the form
E 2
Efon. = Dot (koap)).
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where H,El ) is a Hankel function of the second kind of order

m, and D( ) and D( ) are the scattering coefficients of jth
cylinder, Wthh correspond to the azimuthal index m.

Using the standard method based on Graf’s addition theo-
rem for cylindrical functions, the field scattered by all the
plasma cylinders of the array can be expressed in terms of
azimuthal harmonics in the local coordinate system of the
Jjth cylinder [7]. Next, satisfying the boundary conditions
for the tangential field components on the surface of this
scatterer and using the known scattering matrix of a sin-
gle magnetized plasma cylinder, we can exclude the coeffi-

cients B( %) and obtain a system of equations for the scat-
tering coefﬁc1ents in the form
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(.SA‘ml)lk is used for the corresponding element (i,k = 1,2)

of the matrix Sm] , which is the inverse of the scattering ma-
trix S,, for a single cylinder. The elements of the matrix S,

are expressed via the scattering coefficients D,(,f ) and D,(nH)
of a single cylinder [5] and written as (S}, = DY) and
(§m)21 = ,(f ) in the case of illumination by an E-polarized
plane wave, and as (§m)12 = DEP and (§m)22 = D,(,,H)
if an H-polarized plane wave is incident on the cylinder.
Since the expressions for the elements (S,,,), turn out to be

very cumbersome, they are not given here for the sake of
brevity. Next, restricting ourselves to consideration of only
azimuthal harmonics with the indices 0,41,...,+=M and
bearing in mind that the array contains N cylindrical scatter-
ers, we arrive from Eq. (14) at the system of 2N (2M + 1) al-
gebraic equations, which allow us to determine numerically

the desired coefficients D 5 ) and D( ) for all the cylinders
in the array. The quantity M, Wthh characterlzes the num-
ber of the azimuthal harmonics to be taken into account, is
determined from the numerical tests for the accuracy of the
solution obtained. The quantities Bymz )
( H)

can be expressed

via D; " if required.

To analyze the behavior of the far-zone scattered field (in
the xy plane), we will calculate the scattering pattern 6 (¢).
In cylindrical coordinate system (p, ¢, z) related to the j =0
element of the array, this quantity can be expressed as

o(9) = lim psy’(p.0)/I8"|. (15)

Here, Sg> is the radial component of the time-averaged
Poynting vector S(*) (1/2)Re( E0) x H(S)*) of the scat-

tered field in the xy plane and |S")| is the magnitude of this
vector in the incident wave.

3 Numerical Results

Numerical calculations of the scattering characteristics of
the array were performed for the following values of di-
mensionless parameters: ®,/@y = 8.02, wya/c = 0.188,
N=25(N® =12), 0 = /4, and 0 < y < /2. Recall
that the analysis of the quantities (S,,),, for a single cylin-
drical plasma element in the case kpa < 1 shows the pres-
ence of plasmon resonances [4, 5], at which enhanced scat-
tering occurs from the cylinder. The surface-plasmon reso-
nances corresponding to the azimuthal harmonics m = +1
have the widest linewidths compared with other plasmon
resonances and are the most important in the case con-
sidered. The frequencies of these dipole-type resonances,
which depend on the plasma parameters @, and @y and
the incidence angle 0 in a certain manner [5], will be de-
noted as Wsp+1. At the same time, an equidistant array of
parallel cylinders has the so-called Rayleigh—Wood diffrac-
tion anomalies at the frequencies hereafter denoted as a),gi)
(n=1,2,...). In the limiting case of an infinite array, these
frequencies as functions of the angles 6 and y and the
inter-cylinder distance L can be found from the relation-
ship oL sin@(1 Fcosy)/c = 2zn. It is evident that for

v = /2, we have a),(,+> = a)ff) = W,.

As follows from numerical calculations, the most intriguing
scattering patterns o (¢ ) are observed if the wave frequency
is simultaneously close to the frequency a),gi) and one of the
surface-plasmon resonance frequencies @sp +1 of a single
cylinder. In this case, the behavior of the far-zone field can

change qualitatively with a relatively small variation in any



of the parameters of the problem. This situation is shown
in Fig. 1 for w = /2 in the case where the frequency ®
lies near the frequencies wsp ;1 and @; = 0.958wsp 1, being
closer to either @; or wsp; [Figs. 1(a) and 1(b), respec-
tively]. The normalized (to maximum value) scattering pat-
tern o(¢) for @/w; = 0.988 in Fig. 1(a) has two narrow
lobes at ¢ = 90° and ¢ = 270°, which correspond to the
transmitted and reflected fields, and two wide side lobes in
the directions ¢ = 0 and ¢ = 180°, which are perpendicu-
lar to the incidence plane x = 0 and lie in the array plane.
At the same time, for @/@; = 1.029, the pattern o (¢) in
Fig. 1(b) has a greater number of the side lobes which cor-
respond to the scattered waves propagating at certain angles
from the array plane.

Figure 1. Normalized scattering pattern o(¢) for an
array consisting of N = 25 (N*) = 12) elements at
koLsin6/2m = 0.988 (a) and koLsin6/27 = 1.029 (b) if
L/a=065,0=m/4, and y = /2.

Another interesting situation can take place for y # /2

when a),(,_) #* a),(f). In this case, it is possible that at fixed
values of 6 and L, the incident-wave frequency is again
close to the surface-plasmon resonance frequency wsp | and

lies near the array frequencies ®!”) and a),gl+), which cor-

respond to different diffraction orders n and 7i. Since the
values of @\ ) and w,%ﬂ depend on the incidence angle y,
the frequency @ can become closer to either of these ar-
ray frequencies during the very small variation in y. The
corresponding changes in the scattering patterns o (¢) at
o/osp,1 = 0.994, which are caused by appearance or dis-
appearance of the side lobes near the directions ¢ = 0 and
¢ = 180°, are demonstrated in Figs. 2(a) and 2(b) for w =
1.0190{") =0.9370) ) and © = 0.8140\ " = 1.0060,
respectively.

4 Conclusion

In this work, we have studied the scattering of an H-
polarized plane electromagnetic wave by an equidistant ar-
ray of parallel cylinders filled with a cold collisionless mag-
netoplasma. The far-zone scattering patterns have been an-
alyzed in the special cases where both the surface plasmon
resonances of the array elements and the collective multi-
ple scattering resonances are present in such a system. The
results obtained demonstrate the capabilities of controlling
the scattering characteristics of the plasma-based arrays by

Figure 2. Normalized scattering pattern 6(¢) for an array
consisting of N = 25 (N*) = 12) elements at y = 0.3457
(a) and y = 0.3057 (b) if koLsin 0 /2w = 1.915, L/a = 120,
and 0 = /4.

switching between the different regimes of resonance scat-
tering.
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