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Abstract 
 

The established time domain Transmission-Line Model-

ling (TLM) numerical method is extended to include 

models of (i) saturable dispersive gain and (ii) non-linear 

dielectric material. The method is used to simulate a pho-

tonic memory device based on a nonlinear Parity-Time 

(PT) structure.  

 

1. Introduction 
 

In [1], Bender and Boetcher describe a new class of a 

non-Hermitian Hamiltonian quantum mechanics (QM), 

the so called Parity-Time (PT) symmetric QM, in which 

they show that a Hamiltonian which satisfies a combined 

Parity and Time symmetry may have a completely real 

spectrum. Although the concept of PT-symmetry QM has 

been established since 1998, the practical implementation 

as a quantum mechanical system has been found to be 

problematic. However, the concept has been actively pur-

sued in the context of photonic structures [2-6]. The PT 

concept can be exploited in photonics where an ideal PT-

symmetric system translates to a photonics structure with 

a judicious profile of complex refractive index, which 

requires the combination of both gain and loss [2-3]. In 

the context of modeling such devices, we found that most 

of the work published to date has considered a dispersion-

less gain/loss material property. In [2,4], we have demon-

strated that dispersion impacts on the spectral properties 

of PT-symmetric structures such that PT-symmetric con-

dition can only be achieved at a single frequency in com-

parison to the dispersionless case.  

 

In this paper, we extend our TLM PT model to include 

both material dispersion and non-linearity and apply it to 

a one-dimensional (1D) Bragg grating structure that can 

operate as a memory device.  

 

The paper is organized as follows; in section 2, a brief 

introduction to PT-symmetric structures in photonics and 

their main features is given. In section 3, the dispersive 

saturable gain/loss model and the non-linear polarization 

model which are implemented within the TLM method 

are described. In Section 4 the application of the extended 

TLM model to simulate a non-linear PT-Bragg grating as 

a memory device is demonstrated.      

 

 

 

2. Parity-Time (PT) Symmetric Structure 
 

PT-symmetric photonics structures in photonics requires a 

judicious profile of complex material refractive index as 

[2-3],  

𝑛(−𝒙) = 𝑛∗(𝒙),      where   𝑛 = 𝑛′ + 𝑗𝑛′′ (1). 

that is, the real part of the refractive index 𝑛′ is an even 

function whilst the imaginary part of the refractive index 

𝑛′′ is an odd function in space, 𝒙. 

 

A PT-symmetric structure features some unique proper-

ties in that it may have a completely real spectrum, i.e. 

zero net-power amplification or dissipation, despite hav-

ing both gain and loss in the system. However, there ex-

ists an exceptional point, defined for a certain system pa-

rameters such as gain/loss or coupling strength, and op-

eration beyond this point leads to an unstable system, 

characterized by complex eigenvalues.  

      

3. Transmission-line Model for Nonlinear 

and Dispersive Gain/loss Medium 
 

Throughout this paper, the established TLM method is 

used as our time-domain numerical simulation method [7-

12].  In this paper, we do not attempt to describe in detail 

the basic concepts of the TLM method itself and readers 

are referred to some excellent references [7,10]. The orig-

inal TLM formulation, [7], is based on propagating volt-

age/current impulses on an interconnected mesh of trans-

mission lines, which mimics electromagnetic field propa-

gation in both time and space. In this paper, a more gen-

eral TLM implementation of the TLM is used based on 

the bilinear 𝒵 -transformation of Maxwell’s equations 

[10,11] as it offers greater flexibility in describing general 

material properties [10].  

 

As an illustration of how to implement the material model 

within the TLM method, the simplest case of 1D TLM is 

considered with the governing equation for the TLM node 

as [10]:  

2𝑉𝑦
𝑟 ≡ 𝑉4

𝑖 + 𝑉5
𝑖 = 2𝑉𝑦 + 𝑔𝑒𝑉𝑦 + 2(

1 − 𝓏−1

1 + 𝓏−1
)𝑝𝑒𝑦  (2). 

In (2), 𝑉4,5
𝑖  denote the incoming voltage pulses from the 

left and right of the node; 𝑉𝑦 and 𝑖𝑧 denote the nodal volt-

ages and current respectively; 𝑔𝑒 denotes the normalized 

conductivity, which is described in detail in Sec 3.1, and  



 

𝑝𝑒𝑦  is the normalized dielectric polarization. These TLM 

parameters are related to the physical electromagnetic 

parameters by  

𝐸 ↔ −
𝑉

Δℓ
 ;  𝐻 ↔ −

𝑖

Δℓ 𝜂0
; 𝜎𝑒 ↔

𝑔𝑒
Δℓ𝜂0

 ;  𝑝𝑒 = −
𝑃𝑒Δℓ

𝜀0
 , (3). 

where  Δℓ = Δ𝑡𝑐0 denotes the mesh size parameter and 𝑐0 

is the speed of light in free-space. Due to limitations of 

space, the reader is referred to [10,11] for detail of how to 

acquire these equivalences. In (2), a non-magnetic materi-

al is assumed. Note in (2), 𝓏−1 is the time-delay operator. 

In the following subsection, corresponding material pa-

rameters and their implementation within TLM are de-

scribed.   

 

3.1 Dispersive and Saturable Gain/Loss Model 

 

In this paper, a macroscopic model of saturable dispersive 

gain/loss reported in [13] is considered by which material 

gain/loss is modeled by the conductivity as  

𝜎𝑒(𝐼, 𝜔) = 𝒮(𝐼)
𝜎0
2
[

1

1 + 𝑗(𝜔 − 𝜔𝜎)𝜏
+

1

1 + 𝑗(𝜔 + 𝜔𝜎)𝜏
]   (4). 

where 𝜔𝜎  denotes the atomic transitional angular frequen-

cy, 𝜏  is the atomic relaxation time parameter and 𝜎0  is 

related to the conductivity peak values set by the pumping 

level at 𝜔𝜎 . The saturation coefficient 𝒮(𝐼) describes the 

non-linear nature arising as a consequence of the finite 

number of electrons available in the case of a strong inci-

dent signal and is typically modeled as  

𝒮(𝐼) =
1

1 + (𝐼/𝐼sat)
 .  (5). 

In the case of a small incident signal the saturation coeffi-

cient is typically negligible. Upon application of 𝒵 -

transformation and field-circuit equivalences, eq. (4) can 

also be expressed in TLM parameters as [14] 

𝑔𝑒(𝐼, 𝓏) = 𝒮(𝐼) [
𝐾3 + 𝓏

−1𝐾4 + 𝓏
−2𝐾5

𝐾6 + 𝓏
−1𝐾7 + 𝓏

−2𝐾8
],  (6). 

where the constants are given by  

𝐾1 = 1/𝜏 ; 𝐾2 = 1 + (𝜔𝜎𝜏)
2/𝜏2  

𝐾3 = 2𝐾1Δ𝑡 + 𝐾1
2Δ𝑡2 ;  𝐾4 = 2(𝐾1Δ𝑡)

2 

𝐾5 = −2𝐾1Δ𝑡 + 𝐾1
2Δ𝑡2 ;  𝐾6 = 4 + 4𝐾1Δ𝑡 + 𝐾2Δ𝑡

2 

𝐾7 = −8 + 2𝐾2(Δ𝑡)
2 ;  𝐾8 = 4 − 4𝐾1Δ𝑡 + 𝐾2Δ𝑡

2. 

(7). 

Since any causal system can be described by a past event, 

it can be shown that  

(1 + 𝓏−1)𝑔𝑒 = 𝑔𝑒0 + 𝓏
−1𝑔̅𝑒(𝓏),  (8). 

where the constant 𝑔𝑒0and the causal response 𝑔̅𝑒(𝓏) are 

given by  

𝑔𝑒0 = 𝑔𝑠 (
𝐾3
𝐾6
)  

𝑔̅(𝓏) =
𝑏0 + 𝓏

−1𝑏1 + 𝓏
−2𝑏2

1 − 𝓏−1(−𝑎1) − 𝓏
−2(−𝑎2)

 

(9). 

Equation (8) is now ready to be implemented within the 

TLM algorithm.    

 

3.2 Duffing Model of Nonlinear Materials   
 

The Duffing model for the non-linear dielectric polariza-

tion is described in this section. The Duffing model is a 

dispersive non-linear model and has been extensively ana-

lyzed and shown to be superior to the Kerr model of a 

non-linear material [9].  The dielectric polarization can be 

expressed as, 

𝑃𝑒 = 𝜒𝑒𝐿|𝐸|⏟  
linear

+ 𝜒𝑒
(2) |𝐸|2 + 𝜒𝑒

(3)|𝐸|3⏟            
nonlinear

. (10). 

The Duffing model can be expressed as in terms of nor-

malized dielectric polarization [14],  

𝜕2𝑝𝐷
𝜕𝑇2

+ 𝐾𝐷1
𝜕𝑝𝐷
𝜕𝑇

+ 𝐾𝐷2𝑝𝐷𝑓𝐷(𝑝𝑒𝑦) = 𝐾𝐷3𝑉𝑦 , (11). 

where the constants are given by  

𝐾𝐷1 = 2𝛿Δ𝑡 ;  𝐾𝐷2 = 𝜔0𝐷
2 Δ𝑡2 ; 𝐾𝐷3 = Δ𝜒𝑒0𝜔0𝐷

2 Δ𝑡2,  (12). 

with Δ𝜒𝑒0, 𝜔0𝐷 and 𝛿 are the dielectric DC susceptibility, 

Duffing polarization (angular) resonant frequency and the 

damping constant respectively. The function 𝑓𝐷(𝑝𝑒𝑦) de-

scribes the nonlinear nature of the Duffing equation and is 

given by [14] 

𝑓𝐷(𝑝𝑒𝑦) = 𝑒
𝛼|𝑝𝑒𝑦|. (13). 

Here 𝛼 is the Duffing non-linear constant and is related to 

the physical Kerr nonlinearity 𝑛2 by [14]: 

𝛼 = −
(𝜒𝑒∞ + Δ𝜒𝑒0 + 1)

2𝑛2

𝜀0
2𝜂0(𝜒𝑒∞ + Δ𝜒𝑒0)

2Δ𝜒𝑒0 
. (14). 

By an application of the bilinear 𝒵-transform, (11) can be 

expressed as,  

𝑝𝐷𝐾𝐷4 + 𝑝𝐷𝐾𝐷2𝑓𝐷(𝑝𝑒𝑦) + 𝓏
−1𝑆𝐷1 = 𝐾𝐷3𝑉𝑦 , (15). 

where  

𝐾𝐷4 = 4 + 2𝐾𝐷1 

𝑆𝐷1 = 𝑝𝐷(−8 + 2𝐾𝐷2𝑓𝐷) − 2𝐾𝐷3𝑉𝑦 + 𝓏
−1𝑆𝐷2 

𝑆𝐷2 = 𝑝𝐷(4 − 2𝐾𝐷1 + 𝐾𝐷2𝑓𝐷) − 𝐾𝐷3𝑉𝑦 . 

(16). 

 

3.3 Implementation of the Digital Filter  

 

Now, we implement both the dispersive gain/loss model 

and the Duffing non-linear model. Substituting (8) to (2), 

one finds: 

𝐾𝑒2𝑉𝑦 + 2𝑝𝐷𝑦 = 2𝑉𝑦
𝑟 + 𝓏−1𝑆𝑒𝑦  (17). 

where, 

𝐾𝑒1 = −(2 + 𝑔𝑒1 − 2𝜒𝑒∞) ; 𝐾𝑒2 = 2 + 𝑔𝑒0 + 2𝜒𝑒∞ 

𝑆𝑒𝑦 = 2𝑉𝑦
𝑟 + 𝐾𝑒1𝑉𝑦 + 𝑆𝑒𝑐 + 2𝑝𝐷𝑦 ;  𝑆𝑒𝑐 − 𝑔̅𝑒(𝓏)𝑉𝑦 . 

(18). 

 



 

The equations (17) and (15) are two coupled equations 

with two unknown variables, 𝑉𝑦 and 𝑝𝐷𝑦, which are now 

ready to be solved simultaneously by bisection or the 

Newton-Rhapson iterative method [15].  

 

4. A Non-linear PT Memory Device  
 

In this section, the dispersive and non-linear TLM method 

is applied to model a nonlinear PT symmetric Bragg grat-

ing structure for application as a memory device. The 1D 

Bragg grating is schematically shown in Fig. 1.   

 
Figure 1. Schematic illustration of an 𝑁-period of  non-

linear PT-grating with a physical periodicity Λ.   

Table 1. Frequency dependent material parameters of the 

nonlinear PT-grating [14] 

Parameters 𝑛lo 𝑛hi 

𝜒𝑒∞ 2.5 2.8 

Δ𝜒𝑒0 7.5 7.5 

𝛿(rad/ps) 0.0923 0.0923 

𝜔0𝐷(rad/ps) 4614.4 4614.4 

 

The PT-grating considered has a Bragg resonance at 𝑓𝐵 =
336.85 THz with 𝑁 = 200 and embedded within a back-

ground material having a refractive index of 𝑛𝐵 = 3.626. 

The refractive index profile for a single unit cell is given 

by,  

𝑛𝐺 =

{
 
 
 

 
 
 𝑛ℎ𝑖 + 𝑛2𝐼(𝑥, 𝑡) − 𝑗

𝑐0
𝜔
𝛼(𝜔, 𝐼), 𝑥 <

Λ

4

𝑛𝑙𝑜 + 𝑛2𝐼(𝑥, 𝑡) − 𝑗
𝑐0
𝜔
𝛼(𝜔, 𝐼),

Λ

4
< 𝑥 <

Λ

2

𝑛𝑙𝑜 + 𝑛2𝐼(𝑥, 𝑡) + 𝑗
𝑐0
𝜔
𝛼(𝜔, 𝐼),

Λ

2
< 𝑥 <

3Λ

4

𝑛ℎ𝑖 + 𝑛2𝐼(𝑥, 𝑡) + 𝑗
𝑐0
𝜔
𝛼(𝜔, 𝐼),

3Λ

4
< 𝑥 < Λ

 (19). 

where 𝑛ℎ𝑖 and 𝑛𝑙𝑜 are frequency dependent complex high 

and low refractive index [14], (see table 1).  For modeling 

purposes, the gain/loss material parameter is 𝜔𝜎 = 2𝜋 𝑓𝐵, 

𝜏 = 0.1 ps and saturation intensity 𝐼𝑠𝑎𝑡 = 5 × 10
13W/m2 

[13,14]. The dispersive gain/loss 𝛼 is modeled by the dis-

persive gain/loss material on which the peak gain/loss 𝛼0 

is related to the imaginary part of the refractive index by  

𝛼0 =
𝜔𝜎
𝑐0
𝑛′′(𝜔𝜎). (20). 

 

The transmittance of the non-linear PT-grating is plotted 

in Fig. 2 as the function of the input intensity, for different 

gain/loss parameters 𝛼, for the cases of excitation from 

the left 𝑇𝐿  in Fig. 2(a) and right 𝑇𝑅 in Fig. 2(b). In general, 

the transmittance of the PT-grating forms a hysteresis 

profile with the transmission from the right being differ-

ent from transmission from the left, i.e. 𝑇𝐿 ≠ 𝑇𝑅 . This 

inequality is one of the main features of the non-linear 

PT-grating which violates the Lorentz reciprocity condi-

tion. From Fig. 2, it can be seen that when the PT-grating 

is excited from the left side (hitting the gain section first), 

the presence of the gain/loss shifts the hysteresis to the 

left, such that the switching happens at a lower intensity 

compared to when the PT-grating is excited from the right 

side (hitting the lossy section first). The shift (from the 

passive case) is increased by increasing gain/loss in the 

material.      

 
Figure 2. Hysteresis of the non-linear PT-grating for the 

case when excited from the left 𝑇𝐿  (top part) and from the 

right 𝑇𝑅 (bottom part). For different gain/loss parameter.  

 

The bistable property of the non-linear PT-grating shown 

in Fig. 2 motivates the application of such a structure as a 

memory device with reduced input intensity. This applica-

tion is demonstrated in Fig. 3 for the case of excitation 

from the left and the gain/loss parameter 𝛼 = 2000 cm−1. 

Three different operations corresponding to write, read 

and reset are considered to emulate memory application. 

The read process is set with the intensity 𝐼read = 2.2 ×
1014 W/m2 , writing intensity is 𝐼write = 2.725 ×
1014 W/m2  and reset intensity is  𝐼reset = 1.5 ×
1014 W/m2.  

 

Figure 3(a) shows the input signal used in the TLM simu-

lation, that is a repeated sequence of read, write, read, 

reset operations. The transmitted signal, in Fig 3(b), 

shows a distinct memory property; in the first read in-

stance the transmitted intensity is low, as the PT-grating 

operated at the “0” state, after the write operation (set 

state to “1”), the following read operation gives a high 



 

transmittance for state “1”, the reset operation brings the 

memory state back to “0” and so forth.   

 

 
Figure 3. Demonstration of non-linear PT-grating as a 

memory device. (a) the input electric field and (b) the 

transmitted electric field for left incidence.  

 

5. Summary 
 

A dispersive-and-saturable gain/loss material model and a 

Duffing non-linear model for dielectric polarization are 

implemented within the TLM method. To demonstrate the 

application of the model, a non-linear Parity-Time (PT) 

symmetric Bragg grating is simulated. The results show a 

bistable operation that can be exploited in a memory de-

vice application. It is noted that the extended TLM meth-

od described in this paper can be used to model any arbi-

trary shape of PT-symmetric structure such as whispering 

gallery mode structures as in [2,3] or topological invariant 

PT-symmetric structures as in [3,6].     
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