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Abstract

The established time domain Transmission-Line Model-
ling (TLM) numerical method is extended to include
models of (i) saturable dispersive gain and (ii) non-linear
dielectric material. The method is used to simulate a pho-
tonic memory device based on a nonlinear Parity-Time
(PT) structure.

1. Introduction

In [1], Bender and Boetcher describe a new class of a
non-Hermitian Hamiltonian quantum mechanics (QM),
the so called Parity-Time (PT) symmetric QM, in which
they show that a Hamiltonian which satisfies a combined
Parity and Time symmetry may have a completely real
spectrum. Although the concept of PT-symmetry QM has
been established since 1998, the practical implementation
as a quantum mechanical system has been found to be
problematic. However, the concept has been actively pur-
sued in the context of photonic structures [2-6]. The PT
concept can be exploited in photonics where an ideal PT-
symmetric system translates to a photonics structure with
a judicious profile of complex refractive index, which
requires the combination of both gain and loss [2-3]. In
the context of modeling such devices, we found that most
of the work published to date has considered a dispersion-
less gain/loss material property. In [2,4], we have demon-
strated that dispersion impacts on the spectral properties
of PT-symmetric structures such that PT-symmetric con-
dition can only be achieved at a single frequency in com-
parison to the dispersionless case.

In this paper, we extend our TLM PT model to include
both material dispersion and non-linearity and apply it to
a one-dimensional (1D) Bragg grating structure that can
operate as a memory device.

The paper is organized as follows; in section 2, a brief
introduction to PT-symmetric structures in photonics and
their main features is given. In section 3, the dispersive
saturable gain/loss model and the non-linear polarization
model which are implemented within the TLM method
are described. In Section 4 the application of the extended
TLM model to simulate a non-linear PT-Bragg grating as
a memory device is demonstrated.

2. Parity-Time (PT) Symmetric Structure

PT-symmetric photonics structures in photonics requires a
judicious profile of complex material refractive index as
[2-3],

n(—x) =n*(x), where n=n'+jn" (D).

that is, the real part of the refractive index n' is an even
function whilst the imaginary part of the refractive index
n'' is an odd function in space, x.

A PT-symmetric structure features some unique proper-
ties in that it may have a completely real spectrum, i.e.
zero net-power amplification or dissipation, despite hav-
ing both gain and loss in the system. However, there ex-
ists an exceptional point, defined for a certain system pa-
rameters such as gain/loss or coupling strength, and op-
eration beyond this point leads to an unstable system,
characterized by complex eigenvalues.

3. Transmission-line Model for Nonlinear
and Dispersive Gain/loss Medium

Throughout this paper, the established TLM method is
used as our time-domain numerical simulation method [7-
12]. In this paper, we do not attempt to describe in detail
the basic concepts of the TLM method itself and readers
are referred to some excellent references [7,10]. The orig-
inal TLM formulation, [7], is based on propagating volt-
age/current impulses on an interconnected mesh of trans-
mission lines, which mimics electromagnetic field propa-
gation in both time and space. In this paper, a more gen-
eral TLM implementation of the TLM is used based on
the bilinear Z -transformation of Maxwell’s equations
[10,11] as it offers greater flexibility in describing general
material properties [10].

As an illustration of how to implement the material model
within the TLM method, the simplest case of 1D TLM is
considered with the governing equation for the TLM node
as [10]:
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ZVyr = V41 + Vsl = ZVy + geVy +2 (Tﬁ) Pey 2).

In (2), V4"’5 denote the incoming voltage pulses from the
left and right of the node; V,, and i, denote the nodal volt-
ages and current respectively; g, denotes the normalized
conductivity, which is described in detail in Sec 3.1, and



Dey is the normalized dielectric polarization. These TLM
parameters are related to the physical electromagnetic
parameters by
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where A€ = Atc, denotes the mesh size parameter and c,
is the speed of light in free-space. Due to limitations of
space, the reader is referred to [10,11] for detail of how to
acquire these equivalences. In (2), a non-magnetic materi-
al is assumed. Note in (2), 37! is the time-delay operator.
In the following subsection, corresponding material pa-
rameters and their implementation within TLM are de-
scribed.

3.1 Dispersive and Saturable Gain/Loss Model
In this paper, a macroscopic model of saturable dispersive
gain/loss reported in [13] is considered by which material

gain/loss is modeled by the conductivity as
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where w, denotes the atomic transitional angular frequen-
cy, T is the atomic relaxation time parameter and g, is
related to the conductivity peak values set by the pumping
level at w,. The saturation coefficient §(I) describes the
non-linear nature arising as a consequence of the finite
number of electrons available in the case of a strong inci-
dent signal and is typically modeled as

_ 1
Bl 1+ (I/Isat).

In the case of a small incident signal the saturation coeffi-
cient is typically negligible. Upon application of Z -
transformation and field-circuit equivalences, eq. (4) can
also be expressed in TLM parameters as [14]
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where the constants are given by
Ky =1/1; K, = 1+ (wy1)? /72
Ky = 2K, At + K?At? ; K, = 2(K,At)? -

Ks = —2K,At + K2At? ; Kg = 4 + 4K, At + K, At?
K, = —8 4 2K, (At)? ; Kg = 4 — 4K, At + K,At2.

Since any causal system can be described by a past event,
it can be shown that

(1+271)ge = geo + 27 9e(2), ®)
where the constant g,gand the causal response g,(z) are
given by

geo = s (K_é)
B by + 2z~ 1by + z7%b, ©.
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Equation (8) is now ready to be implemented within the
TLM algorithm.

3.2 Duffing Model of Nonlinear Materials

The Duffing model for the non-linear dielectric polariza-
tion is described in this section. The Duffing model is a
dispersive non-linear model and has been extensively ana-
lyzed and shown to be superior to the Kerr model of a
non-linear material [9]. The dielectric polarization can be
expressed as,

P, = XeL|E| +Xé2) |E|2+Xé3)|E|3- (10).
linear nonlinear
The Duffing model can be expressed as in terms of nor-
malized dielectric polarization [14],

0%pp opp
W"‘ KDIW-I' KuzprD(Pey) = Kp3Vj, (1.
where the constants are given by
KDI = 25At; KDZ = wgDAtz ;KD3 = AXEOwgDAtZl (12)

with Ay,q, wop and § are the dielectric DC susceptibility,
Duffing polarization (angular) resonant frequency and the
damping constant respectively. The function fp, (pe,) de-
scribes the nonlinear nature of the Duffing equation and is
given by [14]

fD(pey) = ea|pgy|. (13).

Here a is the Duffing non-linear constant and is related to
the physical Kerr nonlinearity n, by [14]:

a=— O(eoo + A)(eo + 1)2712 (14)
SgnoO(eoo + AXeO)ZAXeO .

By an application of the bilinear Z-transform, (11) can be
expressed as,

PpKps + pDKDZfD(pey) + 27Sp1 = KpsV, (15).

where

KD4— =4 + 2KD1
Sp1 = pp (=8 + 2Kp, fp) — 2KpsVy, + 27" Sp,  (16).
Spz = pp(4 — 2Kp1 + Kp,fp) — Kp3lj,.

3.3 Implementation of the Digital Filter

Now, we implement both the dispersive gain/loss model
and the Duffing non-linear model. Substituting (8) to (2),
one finds:

KeaVy + 2ppy = 2V + 3718, 17).
where,
Key =—(2+ Ye1 — 2Xew) s Kez =2+ Geo + 2Xewo

B (18).
Sey = ZVyT + Kelvy + Sec + 2pr ; Sec — ge(Z)Vy-



The equations (17) and (15) are two coupled equations
with two unknown variables, V, and pp,,, which are now
ready to be solved simultanecously by bisection or the
Newton-Rhapson iterative method [15].

4. A Non-linear PT Memory Device

In this section, the dispersive and non-linear TLM method
is applied to model a nonlinear PT symmetric Bragg grat-
ing structure for application as a memory device. The 1D
Bragg grating is schematically shown in Fig. 1.
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Figure 1. Schematic illustration of an N-period of non-
linear PT-grating with a physical periodicity A.

Table 1. Frequency dependent material parameters of the
nonlinear PT-grating [14]

Parameters N, Npi
Xeoo 2.5 2.8
Axeo 7.5 7.5

6(rad/ps) 0.0923 0.0923

wop (rad/ps) 4614.4 4614.4

The PT-grating considered has a Bragg resonance at fp =
336.85 THz with N = 200 and embedded within a back-
ground material having a refractive index of ng = 3.626.
The refractive index profile for a single unit cell is given
by,

[t A
Ny + nyl(x, t) —jzoa(w,l),x <Z
A< A
7 x <

C
Ny + 1yl (x, t) —jzoa(w, D), 2

(19)

c A
Ny + nyl(x, t) +j;0a(w,1),z <x< T

c 3A
Ny + 1ol (x, t) +j50a(w,1),T <x<A

where ny; and n;, are frequency dependent complex high
and low refractive index [14], (see table 1). For modeling
purposes, the gain/loss material parameter is w, = 27 f3,
7 = 0.1 ps and saturation intensity Iy, = 5 X 1013W/m?
[13,14]. The dispersive gain/loss a is modeled by the dis-
persive gain/loss material on which the peak gain/loss
is related to the imaginary part of the refractive index by

_ Wg "
ay =—n"(wg). (20).
Co

The transmittance of the non-linear PT-grating is plotted
in Fig. 2 as the function of the input intensity, for different
gain/loss parameters «, for the cases of excitation from

the left T, in Fig. 2(a) and right Ty in Fig. 2(b). In general,
the transmittance of the PT-grating forms a hysteresis
profile with the transmission from the right being differ-
ent from transmission from the left, i.e. T; # Tx. This
inequality is one of the main features of the non-linear
PT-grating which violates the Lorentz reciprocity condi-
tion. From Fig. 2, it can be seen that when the PT-grating
is excited from the left side (hitting the gain section first),
the presence of the gain/loss shifts the hysteresis to the
left, such that the switching happens at a lower intensity
compared to when the PT-grating is excited from the right
side (hitting the lossy section first). The shift (from the
passive case) is increased by increasing gain/loss in the
material.
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Figure 2. Hysteresis of the non-linear PT-grating for the
case when excited from the left T; (top part) and from the
right T (bottom part). For different gain/loss parameter.

The bistable property of the non-linear PT-grating shown
in Fig. 2 motivates the application of such a structure as a
memory device with reduced input intensity. This applica-
tion is demonstrated in Fig. 3 for the case of excitation
from the left and the gain/loss parameter @ = 2000 cm™2.
Three different operations corresponding to write, read
and reset are considered to emulate memory application.
The read process is set with the intensity I;eaq = 2.2 X
10* W/m? , writing intensity is Iypie = 2.725 X
10* W/m? and reset intensity is  Ireger = 1.5 X
101* W/m?.

Figure 3(a) shows the input signal used in the TLM simu-
lation, that is a repeated sequence of read, write, read,
reset operations. The transmitted signal, in Fig 3(b),
shows a distinct memory property; in the first read in-
stance the transmitted intensity is low, as the PT-grating
operated at the “0” state, after the write operation (set
state to “1”), the following read operation gives a high



transmittance for state “1”, the reset operation brings the
memory state back to “0” and so forth.
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Figure 3. Demonstration of non-linear PT-grating as a
memory device. (a) the input electric field and (b) the
transmitted electric field for left incidence.

5. Summary

A dispersive-and-saturable gain/loss material model and a
Duffing non-linear model for dielectric polarization are
implemented within the TLM method. To demonstrate the
application of the model, a non-linear Parity-Time (PT)
symmetric Bragg grating is simulated. The results show a
bistable operation that can be exploited in a memory de-
vice application. It is noted that the extended TLM meth-
od described in this paper can be used to model any arbi-
trary shape of PT-symmetric structure such as whispering
gallery mode structures as in [2,3] or topological invariant
PT-symmetric structures as in [3,6].
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