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Abstract

Saturation properties of parallel propagating broadband
whistler mode waves are investigated using quasilinear the-
ory. By assuming that the electron distribution stays bi-
Maxwellian in the wave excitation process, we combine
the previously obtained energy equation of quasilinear the-
ory with linear wave evolution equation to self-consistently
model the excitation of broadband whistler mode waves.
The resulting evolution profile of wave intensity, spec-
trum, and electron temperature are consistent with those
from particle-in-cell (PIC) simulations. We obtain di-
rectly from quasilinear theory that the saturation temper-
ature anisotropy (A) and parallel plasma beta (β‖) satisfy
A = 0.24/β 0.67

‖ . Our A-β‖ relation agrees very well with
previous results from observation [1] and PIC simulation
[2]. We also investigate the dependence of wave saturation
amplitude and spectral properties such as bandwidth and
peak frequency on various initial and final plasma proper-
ties. Our analysis demonstrates that it might be possible to
predict the wave amplitude from the initial maximum linear
growth rate alone, but not from the initial plasma β‖. Also
we show that the peak frequency and spectrum width are
well defined functions of the final β‖, but not of the initial
β‖ or the initial maximum linear growth rate. Our study in-
dicates that, in case of broadband waves, it might be possi-
ble to bypass time-consuming dynamic calculations and ob-
tain wave amplitude directly from the initial plasma prop-
erties. These results might be useful in combining micro-
scopic whistler wave excitation process with global mod-
eling of energetic electron dynamics in the inner magneto-
sphere.

1 Introduction

Saturation properties of whistler mode waves are impor-
tant to quantify related wave particle interactions. Previous
analysis of saturation properties of whistler mode waves
have mainly used particle-in-cell (PIC) simulations [2, 3].
The main advantage of PIC simulations is that all nonlin-
ear wave-particle and wave-wave interactions are included.
The main disadvantages of PIC simulations are that some-
times it is difficult to identify the main physical process and
that simulations typically have high statistical noise. Satu-
ration properties of broadband waves can also be analyzed
using quasilinear theory. Yoon and Seough [4] used quasi-

linear theory and obtained the anisotropy-beta relations for
combined mirror and proton cyclotron instabilities for the
case of T⊥/T‖ > 1, where T is the temperature and sub-
scripts “⊥” and “‖” denote perpendicular and parallel di-
rections with respect to the background magnetic field. In a
companion paper, Seough and Yoon [5] reported the quasi-
linear analysis for parallel proton cyclotron instability for
T⊥/T‖ > 1 and parallel firehose instabilities for T⊥/T‖ < 1.
Kim et al. [6] analyzed the electron temperature anisotropy
regulation by whistler mode waves using quasilinear theory
within the context of solar wind. In this study, we use quasi-
linear theory to analyze the saturation properties of broad-
band whistler mode waves.

Two kinds of saturation properties will be investigated. The
first one is plasma properties at saturation; i.e., the inverse
relation between temperature anisotropy (A ≡ T⊥/T‖− 1)
and the parallel plasma beta (β‖ ≡ 8πnT‖/B2). Here n is
the number density, and B is the magnetic field strength.
Using linear theory analysis and assuming a bi-Maxwellian
distribution for electrons, Gary and Wang [3] pointed out
that there exists an upper bound on the electron temperature
anisotropy due to the excitation of whistler mode waves,
and the threshold temperature anisotropy satisfies the rela-
tionship

T⊥
T‖
−1 = S/β

α

‖ , (1)

where S and α are two fitting constants. This constraint on
A was then confirmed by 2D PIC simulations [3]. However,
in linear analysis, an assumption about the maximum lin-
ear growth rate (γm) is needed to obtain values for S and α .
The other kind of properties to be investigated are the satu-
ration properties of waves, including saturation amplitude,
the peak frequency, and the spectrum width. These param-
eters are important to estimate effects of waves on particle
dynamics.

2 Quasilinear theory

2.1 Review of quasilinear theory

In this paragraph, we briefly review the quasilinear theory
for parallel propagating waves and especially the energy
equations of Ossakow et al. [7], and describe how we use



the equations to study the evolution and saturation proper-
ties of broadband whistler waves. From standard quasilin-
ear theory for parallel propagating waves, Ossakow et al.
[7] obtained

K⊥(t)+∑
k
(|Bk|2/8π)

[
2+(ω2

p/k2c2)
]
=C⊥, (2)

K‖(t)−∑
k
(|Bk|2/8π)

[
1+(ω2

p/k2c2)
]
=C‖. (3)

Here K⊥,‖ = 〈mv2
⊥,‖/2〉 are the average perpendicular and

parallel kinetic energy of electrons, ωp is the plasma fre-
quency, c is the speed of light in vacuum, and Bk is the mag-
netic field amplitude of the kth mode. The two constants C⊥
and C‖ depend only on the initial conditions. Equations (2)-
(3) essentially describe the transfer of perpendicular kinetic
energy to the wave field and the parallel kinetic energy, as
whistler waves are driven unstable. As wave energy grows,
K⊥ decreases and K‖ increases, or A decreases and β‖ in-
creases. This is the quasilinear relaxation of the electron
temperature anisotropy by interactions with whistler mode
waves. For other details of the theory, we refer readers to
Ossakow et al. [7].

In Equations (2)-(3), the parallel and perpendicular average
kinetic energy are related to the corresponding temperature
by T⊥ ≡ m〈v2

⊥〉/2 = K⊥ and T‖ ≡ m〈v2
‖〉 = 2K‖. Within

the quasilinear framework, the wave growth is described
by linear theory; therefore, the equation describing wave
energy evolution of the kth mode is simply

∂ |Bk|2

∂ t
= 2γk|Bk|2, (4)

where γk is the linear growth rate of the kth mode. If we
assume that the distribution stays as a bi-Maxwellian dis-
tribution [3, 4, 5], then γk can be calculated directly from
the parallel and perpendicular temperature. Taking the time
derivative of Equations (2)–(3), we have the needed differ-
ential equations to describe the time evolution of the elec-
tron temperature,

dT⊥
dt

=−∑
k

2γk
|Bk|2

8π

[
2+(ω2

p/k2c2)
]
, (5)

dT‖
dt

= ∑
k

4γk
|Bk|2

8π

[
1+(ω2

p/k2c2)
]
. (6)

Similar equations have been derived by Seough and Yoon
[5] for EMIC waves.

Equations (4)-(6) are the main equations used in this
study to analyze excitation and saturation of whistler mode
waves. We choose 100 k’s, corresponding to those of
whistler mode waves with frequency between 0.05Ω and
0.95Ω, and assume a small initial noise level (e.g., by set-
ting |Bk|2 = 10−5 for all k’s). Then by solving the closed
set of Equations (4)-(6), we self-consistently track the evo-
lution of whistler waves and the parallel and perpendicular
temperature of electrons based on quasilinear theory.
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Figure 1. Comparison between quasilinear results (solid
orange lines) and PIC simulation results (solid blue lines).
Dashed lines denote the power law fitting to the linear
growth phase.

2.2 Comparison between quasilinear analy-
sis and PIC simulation

Before we analyze the saturation properties of broadband
whistler mode waves, we compare the evolution of wave
energy between PIC simulation and quasilinear theory for
a case. Here we use a one-dimensional electromagnetic
PIC simulation code, where field quantities are assumed to
vary along z direction and three components of the veloc-
ity are retained. Only parallel propagating whistler mode
waves are allowed, consistent with the assumption used in
our quasilinear analysis. The electron distribution used in
the PIC simulation is a single bi-Maxwellian. For the case
in this section, the simulation parameters are taken from
Ossakow et al. [7]. We use T⊥/T‖ = 4,ωpe/|Ωe| = 2, and
w‖/c = 0.07, where w‖ is the parallel thermal velocity. For
this PIC simulation, we use 1024 simulation cells and 2000
number of particles per cell. The cell size is ∆z = 0.05c/Ω,
and the time step is ∆t = 0.02Ω−1.

Figure 1 shows the evolution of wave intensity from PIC
simulation and the quasilinear analysis. The initial noise
level of the wave field in quasilinear analysis is chosen to
roughly match that of the PIC simulation. We fit the linear
growth phase of the wave intensity from PIC simulation and
quasilinear analysis by C0 expC1t , where C0 and C1 are two
constants. Clearly, C1 = 2γ̄ , where γ̄ is the average linear
growth rate. From Figure 1, γ̄/Ω ≈ 0.025 for PIC simula-
tion and 0.035 for quasilinear analysis. The difference of
the saturation intensity between quasilinear theory analysis
and the PIC simulation is within a factor of two. Consider-
ing the approximations made in the quasilinear analysis, we
conclude that results from the quasilinear analysis roughly
agree with those from PIC simulation, and that quasilinear
theory can roughly capture the main physical process in the
evolution of broadband whistler mode waves.



3 Saturation properties of broadband
whistler mode waves

In the following quasilinear analysis, we use 10 initial β‖’s
logarithmically evenly spaced between 10−1 and 10. We
select 12 initial A’s. There are 10 logarithmically evenly
spaced A’s between 100 and 101. We add A = 0.25 and 0.5
so that some of the initial conditions (A,β‖) fall below the
final threshold A-β‖ line, as will be seen below. We also se-
lect three ratios of plasma frequency to cyclotron frequency
(ωpe/Ω = 2,4, and 8) to test the dependence of saturation
properties on ωpe/Ω. Some of the selected cases have very
large initial linear growth rate, and we have removed all
cases with γ0m/Ω > 1, where γ0m is the maximum initial
linear growth rate. For all cases, we solve Equations (4)-
(6) from tΩ = 0 to 600, and verify that the wave field has
reached the saturation stage.

3.1 The A–β‖ relationship

Figure 2 shows A and β‖ at t = 0 and after wave saturation
for all cases calculated. It clearly shows that the final A-β‖
relation from quasilinear theory can be well fit by Equation
(1) with S = 0.24 and α = 0.67, and fitting parameters S
and α are independent of ωpe/Ω. To quantify the goodness
of regression, we use the R2 parameter, which is defined by

R2 = 1− ∑i(yi− fi)
2

∑i(yi−〈yi〉)2 , (7)

where yi is the ith value of the dependent variable, fi is the
value of the fitting function for the ith independent variable
xi, and 〈yi〉 is the mean value of yi. For the current case,
y = A,x = β‖, and f = 0.24/β 0.67

‖ . The parameter R2 takes
value between 0 and 1. An R2 of 1 suggests that the regres-
sion line perfectly fits the data. For this case, R2 = 0.997
suggests that A = 0.24/β 0.67

‖ can well describe the relation-
ship between A and β‖ at saturation.

For comparison, we also plot the A = S/β α

‖ line with S =

0.42 and α = 0.50 from Gary and Wang [3], and S = 0.21
and α = 0.60 from Gary et al. [1]. As can be seen, the
quasilinear results agree surprisingly well with those from
Gary et al. [1], based on Cluster observations in the mag-
netosheath. Compared with Gary and Wang [3], our tem-
perature anisotropy upper bound is smaller by about 0.05
for β‖ ∼ 0.1 and about 0.2 for β‖ ∼ 20. Note that the
temperature anisotropy upper bound from 2D PIC simula-
tion results from An et al. [2] are consistently lower than
the one from Gary and Wang [3] by about 0.1 ∼ 0.2 for
10−1 ≤ β‖ . 4; therefore, we conclude that the quasilinear
theory results agree very well with PIC simulation results
for this β‖ range. Our analysis suggest that the saturation
A-β‖ relation can be well described by quasilinear theory
for this β‖ range, even though we assumed that the distribu-
tion stays bi-Maxwellian.
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Figure 2. The A-β‖ relation at saturation from quasilinear
analysis. The solid red line is the fitting using A=S/β α

‖ .
Black circles denote initial conditions, while color circles
denote saturation conditions. The solid purple line denotes
the A-β‖ relation from PIC simulation results from Gary
and Wang [3]; the dashed purple line, Gary et al. [1].
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Figure 3. The normalized saturated wave magnetic field
energy as a function of the initial γ0m (left) and the β‖ at
saturation.

3.2 The dependence of the saturation wave
properties on plasma parameters

In this section, we investigate the dependence of the satu-
ration wave amplitude, the peak frequency, and spectrum
width at saturation on plasma parameters.

Figure 3 (left) shows the normalized saturation intensity
as a function of maximum initial linear growth rate, γ0m.
We fit the saturation amplitude using a power law func-
tion, and the resulting fitting function is 0.17(γ0m/Ω)0.76.
Note that there is larger spread at smaller γ0m. However,
for a given γ0m, the difference between maximum and min-
imum saturation intensity is within a factor of 2. Figure 3
(right) shows the dependence of saturation wave intensity as
a function of β‖ at saturation. We fit the saturation intensity
as a function of β‖ using a power law function, following
An et al. [2]. The (δB/B)2 scales with β‖ roughly as β 0.5

‖ . If
we only compare the saturation intensity for 0.1 ≤ β ≤ 3,
we see that the saturation intensity (δB/B)2 is consistent
with that from [2]. Comparing the left and right panels
of Figure 3, we conclude that it might be possible to pre-
dict (δB/B)2 based on γ0m, but not β‖ at saturation, since
(δB/B)2 is not a well-defined single-value function of β‖.

Figure 4 shows the normalized peak frequency ωmax/Ω and
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Figure 4. The peak wave frequency (top) and the spectrum
width (bottom) as a function of the initial β‖ (left) and the
final β‖ (right). Red lines are fitting functions using the
form given by Equation (8).

the spectrum width ∆ω/Ω as a function of the initial β‖ and
the final β‖. Denoting the wave power spectral density as
P(ω), the peak frequency is the frequency with maximum
intensity; i.e., Pmax = P(ωmax). The spectrum width, ∆ω , is
defined as the difference between two frequencies ω1 and
ω2 which satisfy P(ω1) = P(ω2) = Pmax/10. From Figure
4, both ωmax and ∆ω are better correlated with β‖ at sat-
uration than with initial β‖. After some experimentation,
we choose to fit data using the analytical function of the
following form

g(a,b,c) = exp[a(lnβ‖)
2 +b lnβ‖+ c]. (8)

The corresponding parameters are shown in Figure 4 for
all four panels. The R2 parameters are close to 1 for the
right two panels of Figure 4, suggesting that the chosen
function g can almost perfectly describe the relationship be-
tween ωmax and ∆ω as a function of the final β‖. From left
panels of Figure 4, the peak frequency and the frequency
width cannot be well predicted from the initial β‖. We have
also experimented with initial γ0m and the initial A, both
parameters give even worse results than the initial β‖.

4 Summary

In this work, we used quasilinear theory to analyze the satu-
ration properties of parallel propagating broadband whistler
mode waves in a plasma where electrons have a single bi-
Maxwellian distribution. Specifically, we investigated the
A-β‖ relationship and the dependence of saturation ampli-
tudes, peak frequency, and frequency width on initial lin-
ear properties and the saturation β‖. Using self-consistent
quasilinear analysis, the obtained A-β‖ relation agrees very
well with observations in the magnetosheath using Cluster
measurement [1]. Our A-β‖ relation also agrees with re-
cent 2D PIC simulations, and the Van Allen Probes obser-
vation in the high β‖ (β‖ > 0.1) regime. Unlike linear the-

ory [3], there is no need to choose an initial maximum linear
growth, and the inverse relationship between A and β‖ is di-
rectly given in quasilinear theory. Compared with PIC sim-
ulation, the quasilinear theory analysis does not suffer from
high statistical noise, and it helps to identify that the main
physical process involved in the evolution and saturation of
broadband whistler mode waves can be well described by
quasilinear theory.

We investigated the relationship between saturation ampli-
tude (δB/B)2 and the maximum initial linear growth rate
γ0m and β‖ at saturation. We showed that it is possible to
predict (δB/B)2 from initial γ0m. This conclusion might
be useful when predicting whistler mode wave amplitude
from global non-self-consistent wave modeling codes. We
demonstrated that the peak frequency and the spectrum
width are well defined functions of β‖ at saturation, but not
of the initial β‖. We showed that both ωmax and ∆ω might
be modeled as a function of β‖ at saturation using analytical
form g(a,b,c) = exp[a(lnβ‖)

2+b lnβ‖+c], where a,b, and
c are three parameters. The R2 parameters for both fittings
are close to 1.
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