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Abstract

This paper illustrates data-driven machine learning ap-
proach for ionosphere total electron content (TEC) forecast-
ing. The authors exploit different state-of-the-are machine
learning algorithms like random forest, support vector re-
gression, and gradient boosting to achive high accuracy
(higher than conventional naive and linear models). The
proposed approach allows to determine the most important
parameters. The approach revealed that current TEC, first
time derivative of TEC, cosine from local time LT, current
F10.7 and SYM/H indexes, exponential moving averages of
TEC (with 12, 24, 96 hour periods), 12h-lagged, 2-days and
15-days lagged F10.7 are the significant features for vertical
TEC 4-hour nowcasting model. As the experimental data,
the vertical absolute TEC was used. The time resolution of
the data is 30 minutes. Initial phase and psueduorange slant
TEC were recorded by the mid-latitude station IRKJ (52 N,
104 E) in 2014. All the models were evaluated and test-
ing results comparison provided. Machine learning based
models allow us to achive small RMSE ≈ 3 TECU, lin-
ear regression model based on significant features results in
≈ 4.5 TECU, while naive models results to huge RMSE.

1 Introduction

The ionospheric parameters nowcasting is a quite urgent
task for radio communication and radar systems, control
and positioning systems [1], [2]. The dynamics of iono-
spheric parameters have become increasingly important to
forecast. One of the parameters is total electron content
(TEC) which can be used for ionosphere correction in radio
systems [3].

TEC forecasting and nowcasting leads us to the complex
mathematical problem of prediction in multi-dimentional
feature space. There are a lot of machine learning ap-
proaches to solve such problems. The main of them it
is neural networks [5] and machin learnning approaches:
Random Forest (RF) [9], Support Vector Regression
(SVM)[7] and Trees Gradient Boosting (TGB) [8] Meth-
ods . In this paper we focuses on two important aspects
of this problem: selection of nowcasting input features and
building of the final model. We used Random Forest, Sup-

port Vector Regression and Gradient Boosting Methods.
Proposed models exploit machine learning to approximate
TEC variations. We consider 4-hour interval for nowcast-
ing.

2 Input data and feature selection

As input data we used absolute vertical TEC data de-
duced from dual-frequency combined phase and pseudor-
ange GNSS measurements [4]. Along with IV we obtained
first and second time derivatives of TEC. To obtain TEC
and its derivatives wee used GPS/GLONASS station IRKJ
(52 N, 104 E) data for 2014. In order to provide additional
information about solar and geomagnetic activity F10.7,
SYM/H and AE indices were employed.

Also we used an apriori knowledge about periodical nature
of considered time series, since we added cosine from local
time (cos(2π ·LT/24)) to feature list, where LT is a local
time in hours. By analogy with classical time series analy-
sis methods moving average and autocorrelation analysis
were exploited. Thus using correlation analysis for fea-
ture extraction we assume that the highest parts of cross-
correlation function (specific lags) should be more infor-
mative. In this way we used data lagged by 0.5, 12, 24, 48,
125, 360 hours. We used also exponential moving averag-
ing (2, 3, 4, 12, 24, 48, 72, 96 hours) from initial data as
input parameters.

3 Modelling results

RF model was exploited to evaluate a relevance of input pa-
rameters. Results on relevance are presented in Fig. 1. With
adherence to this values recursive feature eliminations was
used to get set of the most relative parameters. As one can
see the main parameters for 4-hours ahead regression model
are current TEC, first time derivative of TEC, cosine from
local time LT, current F10.7 and SYM/H indexes, exponen-
tial moving averages of TEC (with 12, 24, 96 hour periods),
12h-lagged, 2-days and 15-days lagged F10.7.

Fig. 2 shows result on 4-hour nowcasted TEC along with
target data (black curve). Random Forest, Trees Gradient
Bosting and SVM results are shown in red, green and blue,



Figure 1. Random forest evaluated Input parameters rel-
evance. Where Iv - TEC values, Gt - TEC time derivate,
MA means moving average with specific period, L denotes
lagged features, cosLT is a cosine from local time.

correspondingly. The main problem as one can see is TEC
nowcasting during night-time. The night-time relative error
can exceed 100%.

Root-mean-square error (RMSE) and mean average error
are shown in Tab. 1. All the values are in TECU units. RF
and TGB RMSEs are 3̃.5 and 3.3 TECU, while 4̃.5 for SVM
with linear kernel. MAE is 2̃.5 for RF.

Figure 2. RF, TGB and SVM models predictions (2014-
11-24 till 2014-11-29).

We also constructed three naive models: first use a current
value as a forecast (N1), second exploits first time derivative
to get evaluation (N2). As a third model multiparameter
linear regression built with selected parameters (LR). Tab.
1 shows that both N1 and N2 models for 4-hour nowcasting
don’t allow appropriate result obtaining, but LR RMSE are
almost the same as SVM those.

Table 1. Predictive models error comparison fro 4-hour
forecast.

RF TGB SVM N1 N2 LR
RMSE 3.49 3.30 4.49 9.14 16.51 4.61
MAE 2.49 2.35 3.50 6.74 12.23 3.66

In order to compare the influence of forecasting period on
model error all evaluated models were tested with different
periods. Results can be seen in fig.3. It is clear that for
all the models the error (RMSE) increases with increase in
forecasting period. There is sharp increase in RMSE at 0-2
hour interval. After 2 hour RMSE increases more slowly.
SVM results is almost the same as those for multiparameter
linear regression.

Figure 3. Error of forecasting models for different periods.

4 Conclusions

Problem of ionosphere total electron content nowcasting is
considered in terms of the state of the art machine learning
methodology. The special attention is paid to the problem
of feature selection.

Machine learning technique allows to select relevant pa-
rameters for effective TEC nowcasting. The approach re-
vealed that current TEC, first time derivative of TEC, co-
sine from local time, current F10.7 and SYM/H indexes,
exponential moving averages of TEC (with 12, 24, 96 hour
periods), 12h-lagged, 2-days and 15-days lagged F10.7 are
the significant features for vertical TEC nowcasting model.
Based on Random Forest and recursive feature eliminations
we find the most important parameters for TEC nowcasting.

As it was shown even simple linear model fitted with rel-
evant parameters gave quite a good results. Random For-
est and Trees Gradient Boosting machine learning models
based on that parameters has rather small RMSE on real
data (≈ 3.4 – 4.5 TECU) than conventional linear model.
So that the multiregression linear regression model (LR)
based on selected parameters reproduce duirnal TEC vari-
ations in a good way. However its RMSE is ≈ 4.5 TECU.
As one can see linear SVM model shows low accuracy. The
accuracy is comparable with multiparameter linear regres-
sion. This leads us to the conclusion that a different SVM
kernel should be used. Unfortunately proper kernel can be
found only empirically.

Constructed models can be used for TEC nowcasting in
radar and radio communication systems for ionosphere ef-
fect reduction. Current parameters can be used for creating
new advanced models at midlatitudes.
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