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Abstract—Small deviations in realized dimensions of THz
waveguides may lead to substantial changes in the performance.
The geometrical dimensions are assumed to vary randomly with
a normal distribution, to represent manufacturing tolerances. In
this paper we propose an approach to compute the influence
of selected geometric dimensions of a THz corrugated waveguide
slow wave structure on its frequency response, phase velocity and
the beam voltage. An affine parametric model of the elemental
integral equations of the 3D finite element procedure using curl
transformations has been used to model the random variations
in geometric parameters.

Index Terms—Finite Element Method, Stochastic collocation,
Terahertz structures, Geometric tolerance.

I. INTRODUCTION

Practical electromagnetic problems are solved using numer-

ical approaches that strive to approximately satisfy the gov-

erning differential equation derived from Maxwell equations.

One of the most common and widely used techniques in elec-

tromagnetic community is the finite element method (FEM)

[1]. Commercial tools like HFSS and COMSOL use an FEM

based solver. FEM is a versatile method for modelling interior

(closed) domain problems with the complex geometries or

inhomogeneously filled geometries.

In many EM problems with complex geometries, one of-

ten faces with unexpected variations in material properties

and geometric tolerances. Much of these randomness and

uncertainty in design parameters of the structure occur due

to manufacturing processes. This is especially true for com-

plex geometries at high frequencies, e.g. at THz. With such

unavoidable variations, one needs to have a proper statistical

model using a stochastic analysis, considering the design

parameters as random variables or random fields to match any

measurements with simulations.

To demonstrate the utility of the approach, the influence

of the uncertain geometric dimensions caused by the fabrica-

tion tolerances on critical response parameters of Slow wave

structures (SWS), in particular corrugated waveguide TWT

structures at THz frequencies has been quantified. SWS are

high frequency microwave devices that operate in the GHz to

THz frequency range. Depending on the operating frequency,

computer numerical controlled (CNC), nano filling, Ultravoilet

LIGA, or deep reactive ion etching (DRIE) may be used

to fabricate these devices. Fabrication errors due to exces-

sive surface-grinding, residual undercuts and rounded corners

causes the change in dimension of the wave guide. This causes

the shift in frequency of operation and thus changes the phase

velocity and interaction impedance [3]. Accurate knowledge

of phase velocity and interaction impedance are very crucial

as the small signal gain of the SWS device is sensitive to

these parameters [4]. A variation of 0.5% in phase velocity

can cause 8 dB change in small signal gain and 10% change

in interaction impedance can effect the small signal gain by

5 dB [5]. The study of random fluctuation effects of any of

these design parameters using Monte Carlo simulations are not

possible due to large computational time of the deterministic

solvers. An alternate feasible approach is demonstrated to

do the stochastic analysis of large deterministic problems by

incorporating the effects of random variations of a geometry

into the finite element formulations of electromagnetics.

II. STOCHASTIC PROCEDURE

Consider the generalized matrix eigenvalue equation to be

solved with appropriate boundary condition for the dispersion

analysis of SWS :

AE = k2
0
BE (1)

In a finite element procedure, the local matrix entries corre-

sponding to the edges s, t on an arbitrary element T are given

by

Ast =

∫

T

µ−1

r (∇×w
∗
s) . (∇×w

∗
t ) dx (2)

Bst =

∫

T

ǫr ws .wt dx (3)

The above stiffness and mass matrix integrals can be evaluated

on the reference element for vector based tetrahedron elements

using
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∫

T
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=
1

|JT |

∫
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−1

T

)
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(5)

where J is the Jacobian of the transformation of the element

T onto a standard reference element T̂ . The random variation

in the geometrical parameters can be simulated by perturbing

the finite elements corresponding to the parametric domain.



As a result of the geometric parameter uncertainty, the eigen-

value equation of the system will become random eigenvalue

equation of the form

A(ξ) E(ξ) = λ(ξ) B(ξ) E(ξ) (6)

where ξ (= ξ(θ)) is a vector of standard random variables,

belongs to the probability space (Θ, F , P ). The effect of

random variations in the geometrical modelling parameter can

be taken into account in the finite element matrix constructions

by scaling the Jacobians of the local element matrices. This

approach can be used to compute the influence of the stochas-

tic variations in geometric dimensions without re-meshing

for each perturbation. It maybe noted that conventional FEM

procedure, any changes in the model geometry results in

changes in the mesh. The above scaling procedure avoids this

requirement.

A. Stochastic Collocation

Stochastic collocation is a sampling technique of a random

field/variable [5]. The basic principle of stochastic collocation

is based on the quadrature sampling of the random space and

the functional interpolation of the stochastic response using

appropriate basis functions. It is a non-intrusive technique

which means that the input to the random system model will be

varied but not the actual solution process. The deterministic

solvers are used as black boxes for computing the response

at collocations points. To compute the stochastic response

characteristics, the output response is assumed to have the

probability distribution and thus can be expressed in the form

of polynomial chaos expansion as

f(ξ) =
M
∑

k=1

fkΨk(ξ) (7)

where Ψk are appropriate orthogonal polynomials. Lagrange

polynomials defined as

Lm(ξ) =

m
∏

j=1

j 6=k

(ξ − ξj)

(ξk − ξj)
(8)

such that Lm(ξj) = δjk, m is the number of collocation

points, ξj is the variable with the node set Θ = {ξ1 · · · ξm}, is

often used in interpolation based approach [5], [6]. Once the

response of the system fk is computed using the deterministic

solver the statistics and the density function can be evaluated

using equation ??.

B. Monte Carlo Analysis

In the following examples, Monte Carlo simulations are

done for validation. The Monte carlo simulation were done for

104 trails by running the deterministic solver for each sample

from the random vector. The major challenge in Monte carlo

simulation is generating a new mesh for each new sample

of the random variable. This has been done by changing the

coordinates in the .GEO file of the GMSH through MATLAB

and there by generating the mesh with new coordinate file.

(a) 3D view

(b) Side View

Fig. 1: Ridged TWT structure

Monte carlo method described in the following steps:

1: Compute N samples of the stochastic variable with given

distribution.

2: Solve the deterministic system to obtain the N deterministic

solutions.

3: Compute the statistics of the response quantities.

The above Monte Carlo analysis may take several days to

arrive at converged solutions. To overcome the unusual com-

putational time and the cost of the Monte carlo analysis, the

proposed approach uses the geometric affine element integrals

given in Equation ??.

III. NUMERICAL EXAMPLE

A. Corrugated Rectangular Waveguide

The corrugated rectangular waveguide structure is a simple

structure suitable as slow wave structures at THz frequency

range. They are easy to fabricate with the available technolo-

gies and simple to assemble [7]. The geometrical dimensions

for an SWS operating at 990 GHz are given in Table ??

[8]. Due to the small dimensions of the ridges, especially

at the THz frequency range, the geometrical dimensions may

vary to the actual design dimensions. Hence the sensitivity

analysis of the various design parameters are carried out for a

better design and practical specification of the manufacturing

tolerance levels. The approach in the above section is used to

quantify the influence of geometric variations on the cold test

parameters of this TWT structure. The sensitivity analysis is

performed on phase velocity, beam voltage and the operational

frequency of a SWS.

TABLE I: Design parameters

Geometric parameter value

w 300 µm
b 130 µm
p 25 µm
s 80 µm
t 15 µm
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Fig. 2: Dispersion characteristics of the fundamental spatial

harmonic
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Fig. 3: Frequency Density Function at fixed V0

The dispersion characteristics for the structure shown in

Fig. ?? obtained through deterministic FEM is shown in Fig.

??. The interaction of the beam voltage curve and the EM

wave is found to occur in the fundamental spatial mode.

The corresponding beam voltage is obtained from the phase

velocity relation is 8 KV.

B. Sensitivity analysis

Sensitivity analysis of the SWS is performed on the phase

velocity, beam voltage and frequency of operation using the

approach discussed above. We considered 1% change in s,

h, w and p, t are assumed to change by ±0.35 µm. All

the parameters are considered to vary as normal distribution.

The density plot of the frequency variation obtained using the

stochastic collocation approach and Monte Carlo analysis is

shown in Fig. ??. The density functions of the phase velocity

and beam voltage curves are shown in Fig. ?? and Fig.??.
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Fig. 4: Phase velocity Density Function at fixed V0

Beam Voltage (KV)
3.5 4 4.5 5 5.5 6 6.5 7 7.5

D
en

si
ty

fu
n
ct
io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Stochastic Collocation
Monte Carlo

Fig. 5: Ddensity function of Beam Voltage of SWS

IV. SUMMARY

In this paper we demonstrated n approach to incorporate

the effects of random variations of a geometry into finite

element formulations for electromagnetics. The proposed ap-

proach uses the Jacobians of 3D vector FEM formulations

to implement the stochastic collocation method for geometric

parameters in the problem. The density function for the

response characteristics are computed using Lagrange inter-

polation polynomials.

The cold test characteristics of Slow wave structures at THz

frequencies are computed using the finite element method. The

sensitivity analysis of phase velocity and the beam voltage

characteristics are computed with respect to the geometric

parameter variations. The complexity of the solution varies

only marginally depending on the number of design variables

allowed to have tolerance.

Unlike Mote Carlo approach which requires as many differ-

ent meshes and repeated simulations as the number of sample

variations, the proposed approach is computationally elegant

and provides the statistical effects in just one execution.
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