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Abstract

Unmanned aerial vehicle based field measurements have

been proposed as a possible solution to provide calibration

data for large ground based radio telescope arrays, such as

the Mid Frequency Aperture Array planned for the Square

Kilometre Array project. This paper considers planar near-

field scanning using a quad-copter equipped with a differen-

tial GPS (DGPS). The effect of random positional errors as-

sociated with DGPS on two different near- to far-field (FF)

transformations, namely the planar plane wave expansion

(PPWE) and the Fast Irregular Antenna Field Transforma-

tion Algorithm (FIAFTA), are investigated in the frequency

range 450 MHz–1450 MHz. It is shown that FIAFTA dras-

tically outperforms the PPWE for the given situation and

produces adequate results over the band for a positional er-

ror of 1 cm. However, considering positional inaccuracies

of 5 cm, both algorithms produce a predicted FF pattern

which is corrupted beyond being of any practical use.

1 Introduction

Proposed designs for the Mid Frequency Aperture Array

(MFAA), such as that in [1], present new challenges with

regard to pattern calibration, chief among these being the

unprecedented number of elements projected to feature in

the instrument. With a wide field of view (FoV), coupled

with a possible lack of natural calibration sources in the ob-

servation domain, traditional calibration methods become

problematic. Given this, interest into unmanned aerial ve-

hicles (UAVs), acting as artificial calibration sources, has

arisen as a possible solution. Direct far-field (FF) mea-

surements of various antenna systems using UAVs, such as

that in [2], have been reported to achieve reasonable accu-

racy. However, the proposed aperture size of the MFAA

gives a FF region at distances which place unreasonable re-

quirements on the battery life of the UAV. Therefore, this

study focuses on near-field (NF) measurements of an arti-

ficial source in the form of a quad-copter with two orthog-

onal transmitting dipole antennas and on-board differential

GPS (DGPS). To be of use in calibrating a radio telescope,

the measured NF must be transformed into the FF pattern

of the antenna under test (AUT) using a suitable transfor-

mation algorithm. This requires knowledge of both mag-

nitude and phase of the NF. This additional phase require-

ment makes NF measurements more sensitive to probe po-

sitioning errors than FF measurements. As such, two NF

to FF transforms are applied in this study and their sensi-

tivity to positional errors associated with a typical DGPS

(taken to be between 1 cm–5 cm) is compared in the fre-

quency band of interest 450 MHz–1450 MHz. The first

transformation is the well-known planar plane wave expan-

sion (PPWE), which makes use of the fast Fourier trans-

form (FFT). A positional error sensitivity analysis, akin to

that undertaken here, utilising the PPWE was performed

in [3] and showed that accurate FF pattern characterisa-

tion, over this frequency band and for the given measure-

ment system, is implausible. Therefore, we now extend

this analysis by comparing the performance of the PPWE

against the Fast Irregular Antenna Field Transformation Al-

gorithm (FIAFTA), recently developed by Eibert et al. and

described in [4], [5] and [6]. As the name suggests, FI-

AFTA does not necessitate the regularly spaced sample grid

required by FFT based algorithms such as the PPWE. This

makes FIAFTA an attractive choice for UAV based mea-

surements, where measurement data positions are, by na-

ture, arbitrary. In addition, it is the hope that FIAFTA’s

relaxation on sample spacing requirements will make for

an FF pattern prediction that is more resilient to probe po-

sitional errors than the PPWE. Such a comparison between

the two algorithms’ sensitivity to probe positional errors is

carried out in [5], where it appears that both algorithms are

equally sensitive. However, the positional error levels used

were far smaller than those of interest here.

2 Nearfield to Farfield Transforms

2.1 Planar Plane Wave Expansion

A well-known and mathematically simple method for cal-

culating the FF from a planar NF measurement is to utilise

the FFT to compute a spectrum of plane waves, propagat-

ing from an aperture plane above the AUT. This is done by

measuring the tangential E-field components (Exa and Eya)

over a plane, a fixed distance z = z0 from the AUT. The

FFT is then used to calculated the x̂ and ŷ components of

the plane wave spectra as [7]

fx(kx,ky) = F{Exa}, fy(kx,ky) = F{Eya} , (1)

where F denotes the Fourier transform and the wave vec-

tor is defined in Cartesian coordinates as k= kxx̂+kyŷ+kzẑ.

Utilising the method of stationary phase, the spherical com-

ponents of the E-field in the FF region can then be approx-



imated as

EFF
θ (r,θ ,φ)≈ j

ke− jkr

r
( fx cos(φ)+ fy sin(φ)), (2)

EFF
φ (r,θ ,φ)≈ j

ke− jkr

r
cos(θ)(− fx sin(φ)+ fy cos(φ)),

(3)

at a radial distance r away from the AUT. Here we will

investigate the accuracy of the predicted total E-field mag-

nitude in the FF, calculated as

EFF
total(r,θ ,φ) =

√

|EFF
θ |2 + |EFF

φ |2 . (4)

Using the FFT imposes strict requirements on the planarity

and regularity of the sample space and any deviation in this

causes significant errors in the predicted FF pattern. Addi-

tionally, in order to fully recover the pattern, a Nyquist sam-

pling criterion of ∆x = ∆y = λ/2, with λ being the wave-

length, should be adhered to.

2.2 FIAFTA

The strict sample spacing requirements of FFT based algo-

rithms pose significant obstacles for UAV measurements,

where perfect samples on a regular grid are not a reality.

Therefore, transformation algorithms more suitable to ar-

bitrary NF samples are desirable. FIAFTA is such an al-

gorithm, where the diagonal translation operator, TL, well-

known from the fast multipole method (FMM) [8] as

TL(k̂, r̂M) =−
jk

4π

L

∑
l=0

(− j)l(2l+1)h
(2)
l (krM)Pl(k̂ · r̂M) , (5)

is used to relate propagating plane waves emanating from

the AUT into incoming plane waves at the probe, for each

measurement point rM . Here h
(2)
l denotes the second order

spherical Hankel function, Pl is a Legendre polynomial and

L is the number of multipole terms, which must be chosen

according to the size of the AUT and probe. Here we as-

sume an ideal probe and choose L according to [5]

L =
kd

2
+10 , (6)

with d being the diameter of the minimum sphere enclos-

ing the AUT. Utilising (5), it is possible to represent the

voltage measured on two orthogonal measurement probes

(U1 and U2) as the k-space integral of plane wave currents,

J̃, over the Ewald sphere of the AUT [4]. Using numerical

quadrature to perform the integral, the probe voltage at each

measurement point can be expressed as

U1/2(φm,θn,rM) =− j
ωµ

4π ∑
kφ

∑
kθ

TL(k̂, r̂M)W (kθ )

×P1/2(kφ ,kθ ,φm,θn) · (Ī− k̂k̂) · J̃(kφ ,kθ ) . (7)

Here, each sample location is represented by m = [1, ...,M]
and n = [1, ...,N], where M and N are the number of NF

samples in the φ̂ and θ̂ directions respectively. Ī is the unit

dyad and P is the FF pattern of the probe (assumed ideally

isotropic in this paper). The weighting function W (kθ ), as

well as the discrete representation of plane wave-numbers

as kφp and kθq
, where p = [1, ...,P] and q = [1, ...,Q], is

determined by a suitable quadrature rule. The number of

plane wave samples in the φ̂ and θ̂ directions (P and Q)

set up by the quadrature rule are in turn a function of the

multipole order of the AUT, calculated as in (6). With (7),

it is possible to set up the linear system of equations

U′ =− j
ωµ

4π
||C|| · J̃′ , (8)

where the coupling matrix C contains the translation oper-

ator, quadrature weighting function and probe receiving FF

pattern,

C
1/2

θ/φ
(kφ p,kθq,φm,θn) = TL(k̂, r̂M)W (kθq

)

×P
1/2

φ/θ
(kφp ,kθq

,φm,θn) . (9)

A suitable solver, such as the generalised minimal residual

(GMRES) solver, is then used to solve the corresponding

normal system of (8) for the plane wave currents tangential

to the Ewald sphere. The FF may then be approximated as

EFF(r,θ ,φ) =− j
ωµ

4π

e− jkr

r
J̃(kθ ,kφ ) , (10)

The preconfigured tolerance of the GMRES solver (which

dictates the desired residuum of the final solution) is an im-

portant factor, especially when considering measurement

data corrupted by noise. In this case it is preferable to set a

higher tolerance level in order to terminate the solver before

the solution is severely affected by noise [4]. In addition to

this, the poles of the Ewald sphere, i.e. at θ = 0 and θ = π ,

require special attention if good convergence results are to

be achieved. This is due to the fact that these points present

discontinuities in spherical coordinates and must be appro-

priately handled during the numerical integration. In [6] the

Cartesian vector components are considered as they present

continuous functions over the surface and here we follow

a similar approach, whereby the measured x̂ and ŷ compo-

nents of the NF are used to resolve the plane wave currents,

J̃x and J̃y, over the Ewald sphere. From this the ẑ-directed

plane wave currents, J̃z, are solved using the relation [7]

J̃z(kx,ky) =−
kxJ̃x(kx,ky)+ kyJ̃y(kx,ky)

kz

, (11)

from which the spherical components and/or total magni-

tude of the FF, as per (4), can be readily determined.

3 Experimental Procedure

3.1 Antenna Under Test

An x̂-directed half-wave dipole, situated λ/4 above an infi-

nite ground plane, is considered as it mimics the wide FoV

of the MFAA. The method of images is used to remove the



plane and the equivalent system is simulated in FEKO [9].

As the effects of non-ideal probes are not considered here,

the x̂ and ŷ components of the NF on a planar surface is cal-

culated directly and used in the appropriate transformation.

For the PPWE, a square sampling plane with side lengths of

10 m, a distance z0 = 3λ from the dipole was calculated at

a Nyquist sampling rate. For FIAFTA, a spherical sample

spacing projected onto the plane at z0, as detailed in [5], is

used for the same amount of samples as in the PPWE. With

a multipole order chosen as L = 14, the amount of mea-

surement points greatly exceeds the number of unknowns,

helping to create a heavily overdetermined system, which

may be more resilient to noise. Additionally, in an attempt

to limit the affect of noise on the solution, the tolerance

of the GMRES solver is set to the relatively high value of

10−3.

3.2 Error Calculation

To investigate the sensitivity of the transformations to po-

sitional error, noise is injected into the NF measurement

coordinates (x,y,z) to give the noisy coordinates

(xn,yn,zn) = (x+nx,y+ny,z+nz) , (12)

where nx, ny and nz are randomly chosen from a normal

distribution with mean centred on the measurement loca-

tion and standard deviation (σ ) determining the level of er-

ror. Taking NF measurements at these noisy coordinates,

the transformed FF is calculated for both algorithms as if

measurement coordinates were ideal, thus simulating erro-

neous measurements taken by a UAV. The total magnitude

of the transformed FF at a radial distance r = 100 m is then

compared to a reference, EREF , which is the direct FF mea-

surement taken from FEKO. This gives an error map, nor-

malised to the reference, as

ek(θ ,φ) =
|EREF(θ ,φ)−EFF

total(θ ,φ)|

EREF(θ ,φ)
, (13)

over the entire region. We go on to analyse the root mean

square (RMS) error over multiple runs, N, given as

eRMS(θ ,φ) =

√

1

N

N

∑
k=1

(ek(θ ,φ))2 , (14)

and the maximum error

emax(θ ,φ) = max(e(θ ,φ)) , (15)

where e(θ ,φ) is the vector [e1,e2, ...,eN ] and max() takes

the maximum error seen, over N runs, at each FF angle.

These error maps are reduced to scalars by integrating over

the FoV of interest (here taken as within 60◦ from zenith)

and normalised to the FoV surface area (S),

S = π(sin2(
π

3
)+(1− cos2(

π

3
)) , (16)

giving the scalar error ei as [3]

ei =
1

S

∫ π

0

∫ π
3

− π
3

e(θ ,φ)cos(θ)dθdφ . (17)
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Figure 1. Transformed FF at φ = 0◦ for varying positional

error, where the black line represents the reference FF

Equation (17) provides a metric which can be used to eas-

ily compare the performance of the two algorithms when

subjected to varying levels of positional error.

4 Results

The effect of varying levels of positional error, λ/50 < σ <
λ/5, in the transformed FF for both the PPWE and FIAFTA

can be seen in Fig. 1a and Fig. 1b respectively. The cal-

culated FF error (ei) for each injected positional error is

shown in the legend so that one can reconcile this metric

with the affected pattern plot. One can immediately see

that FIAFTA appears to be more stable when the positional

error is within a tenth of a wavelength. Above this and FI-

AFTA is seen to give higher error levels than the PPWE,

a fact demonstrated in Fig. 2, which compares the max-

imum and RMS error of the two algorithms for increasing

σ . It is seen that FIAFTA performs better only up to around

σ = 0.22λ , after which the PPWE presents a lower RMS

error. This behaviour is of little significance considering

the fact that, at these high error levels, both transformed FF

patterns are corrupted beyond being able to serve any prac-

tical purpose. To investigate the plausibility of NF mea-

surements taken with the UAV system in question, upper

and lower positional error levels are defined as σlower = 1

cm and σupper = 5 cm, which correspond to typical levels

seen in DGPS. From this, the upper and lower bounds of the

maximum FF error (emax converted to a scalar via (17)) is
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Figure 2. Comparing maximum (solid) and RMS (dotted)

error for increasing positional error
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Figure 3. Comparison of maximum FF error bounds (emax)

for a positional error between 1 cm–5 cm

computed for 50 runs (N = 50) over the frequency range 10

MHz–1450 MHz. The performance of the two algorithms

is compared in Fig. 3, where FIAFTA is seen to give lower

error levels over the whole band.

5 Conclusion

It is clear from the above analysis that, for the given situa-

tion, FIAFTA presents a superior alternative to the PPWE.

For σ = 5 cm, we find that using current DGPS technol-

ogy with the PPWE is completely implausible above 100

MHz and largely unsatisfactory below 100 MHz. Contrary

to this, FIAFTA produces adequate results below 100 MHz,

with a maximum error of around 3% at 100 MHz. As we

approach our band of interest, the maximum error is seen to

rise to 23% at 450 MHz and beyond this FIAFTA produces

unusable results. If, however, we could achieve a σ = 1 cm

maximum positional error, NF measurements with DGPS

over the whole band become possible with FIAFTA, where

the error at 1450 MHz reaches a maximum of 12% (con-

trary to the PPWE which reaches 60% error for the same

scenario). This improved performance of FIAFTA is seen

as a result of the larger number of effective samples used by

this method, i.e. for the same number of samples the FI-

AFTA system is overdetermined whereas the PPWE is not.

Aside from possible advances in DGPS technology, results

may be improved by extending FIAFTA to include a multi-

level FMM (MLFMM) type grouping scheme of measure-

ment and source coordinates, as detailed in [4]. In addi-

tion to providing a more flexible algorithm, the aggregation

procedures of the MLFMM may invoke an implicit averag-

ing effect in the NF measurements, thus reducing FIAFTA’s

sensitivity to positional errors. FIAFTA also lends itself

naturally to the use of spherical harmonic expansions and

is able to utilise any a priori information available on the

AUT. This, together with the possibility of averaging results

over multiple runs or increasing the amount of NF sam-

ples, makes future pattern characterisation of the MFAA via

UAV’s equipped with DGPS realisable.
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