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Abstract

In this paper, a promising spectrum sensing technique is

proposed using Neyman Pearson (NP) based energy detec-

tion scheme for cognitive radio (CR) systems, where the

secondary user is running in full duplex (FD) mode under

residual self-interference (SI). First, NP based likelihood

ratio test is carried out in additive white Gaussian noise

(AWGN) environment and the closed form expressions for

performance metrics are derived analytically. Next, mini-

mum mean square error based estimator correlator for spec-

trum sensing under AWGN scenario is proposed, where

PU signal having uncertain/arbitrary covariance structure is

considered affirming a more realistic scenario in a hetero-

geneous network. Finally, the proposed detection scheme is

extended to a practical Rayleigh fading scenario in FD CR

under residual SI, where closed form analytical expressions

for performance metrics are also derived. The simulated

and analytical results are found in good compliance with

each other.

1 Introduction

The demand for high data rate communications leads to

intensive deployment of advance wireless technologies in

several applications such as wireless hand-held devices,

smart cities, and smart homes, etc., which results in drastic

depletion of spectrum resources causing spectrum scarcity

problem [1, 2]. To overcome this drawback, cognitive ra-

dio (CR) has appeared as an efficient technology to en-

hance the spectrum utilization [3]. In networks (CRNs),

spectrum sensing followed by dynamic spectrum access

are the two mandatory processes [4]. In the first process,

secondary users (SUs)/unlicensed users sense the primary

users (PUs)/licensed users activity and accordingly decide

their transmission opportunities while in the second pro-

cess, SUs transmit on the unused spectrum without inter-

fering to PU.

Generally, in most CRNs, the SU operates on half duplex

mode that utilizes two separate channels for sensing and

transmission [5]. Full duplex (FD) system bearing the po-

tential of almost increasing the spectrum efficiency twice

as it facilitates simultaneous bidirectional communications

using the same frequency channel [6, 7]. However, due to

simultaneous transmission and reception, there may be ex-

cessive interference leakage which is called as self interfer-

Figure 1. Sensing architecture of FD CRN

ence (SI). To suppress that, the researchers have proposed

various techniques in analog, propagation and digital do-

mains, which makes FD technology feasible in CRNs [8].

In FD CR systems, SUs perform the simultaneous sens-

ing and transmission, enhancing the capacity of the robust

spectrum sensing in FD enabled CRNs which is discussed

in [9, 10]. The most common affluxion to the spectrum

sensing is the energy detection method which has low com-

plexity [11], but it is highly susceptible to noise variance

uncertainties. In [12], the authors show that the Neyman

Pearson (NP) based spectrum sensing technique exhibits a

better performance. Researchers have extensively worked

on spectrum sensing under noise uncertainties [13, 14], but

signal uncertainty is another limiting factor that results in

additional detection performance degradation [15].

In this research, a novel detection technique considering PU

signal with arbitrary covariance matrix under Rayleigh fad-

ing scenario is proposed. In this work, first NP based LRT

is performed for PU signal detection under residual SI oc-

curring due to FD capabilities of SU and the analytical ex-

pressions for the Pd and Pf a are derived under additive white

Gaussian noise (AWGN) scenario. Later, spectrum sensing

for PU signal having arbitrary covariance matrix represent-

ing a more feasible and practical uncertainty model is pre-

sented, where the NP detector correlates the received signal

sample with an estimate of the transmitted signal sample,

obtained by minimum mean square error (MMSE) estima-

tion technique. The study is further stretched out by exam-

ining the effect of Rayleigh fading imposing a realistic sce-

nario for signal detection. For the above implemented case

also, closed form expressions for Pd and Pf a are obtained

and found closely matched with the simulated results.



2 System model

Fig. 1 depicts a FD communication system for SUs in CRN

under residual SI, where SU-1 is simultaneously sensing the

availability of PU link and communicating with SU-2. The

received signal, y[n] under H0 and H1 at SU-1 are given by;

H0 : y[n] = z[n]+w[n] n = 1, ....,N

H1 : y[n] = x[n]+ z[n]+w[n], n = 1, ....,N (1)

In (1), w[n] and z[n] are white noise and unavoidable resid-

ual SI, assumed to be Gaussian random variables with

mean (µ = 0) and variances (σ2
w) and (σ2

z ) respectively.

x[n] = hs[n] is also assumed to have Gaussian distribution

N (0,σ2
x ) [9], where, s[n] is PU signal and h is chan-

nel gain. Granted, the contiguity of both the antennas for

transmission as well as reception on the same device, this

premise is justified [9, 11]. In the following sections, we

present the LRT detection with NP technique in AWGN

scenario. Then, we proceed further to a more practical

scenario where, we extend the proposed detection algo-

rithm considering PU signal with arbitrary covariance to a

Rayleigh fading scenario.

3 Basic energy detection scheme using NP

technique under residual SI

Considering the previous section, probability distribution of
the received signal y[n] at SU under hypothesis H0 and H1

are as follows:

H0 : y[n]∼ N (0,σ2
z +σ2

w)

H1 : y[n]∼ N (0,σ2
x +σ2

z +σ2
w). (2)

For ease of calculation, we assume σ2
H0

= σ2
z +σ2

w for null

hypothesis, and σ2
H1

= σ2
x +σ2

z +σ2
w for alternate hypothe-

sis. A NP detector decides H1 when the likelihood ratio is

greater then a threshold value (γ), given as:

L(y) =
P(y;H1)

P(y;H0)
> γ. (3)

Thus, the decision statistic for H1 to be true becomes;

T (y) = ln(L(y)) = ln(
P(y;H1)

P(y;H0)
)> ln(γ),

= ln
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After retaining only the data dependent terms and with

scaling, the test statistic is rewritten as:

T (y) =
N−1

∑
n=0

y2[n]> γ ′. (5)

From the right tail approximation, the performance metrics

i.e. Pf a and Pd are given by;

Pf a = 2Q

(

√

γ ′

σ2
H0

)

, and Pd = 2Q

(

√

γ ′

σ2
H1

)

. (6)

Figure 2. Block schematic of proposed estimator-correlator based energy

detection in FD-CR under residual SI

For the fixed value of Pf a, the threshold value γ ′ is given as:

γ ′= σ2
H0

{

Q−1(
Pf a

2
)

}2

. (7)

4 Proposed estimator correlator based en-

ergy detection schemes

4.1 Energy detection for PU signal with ar-

bitrary covariance matrix structure in

AWGN

The block schematic of estimator-correlator for the detec-
tion of signal in FD CRN is shown in Fig. 2. Under the
assumed scenario, the hypothesis H0 and H1 are given as:

H0 :y[n]∼ N (0,σ2
z +σ2

w) = N (0,σ2
H0

I)

H1 :y[n]∼ N (0,Cx +(σ2
z +σ2

w) = N (0,Cx +σ2
H0

I)). (8)

Here, the PU signal is to be estimated depending on the

received data vector y, and x & y are jointly Gaussian with

zero mean. The MMSE estimate of the PU signal is inter-

preted as:
x̂ =CxyC−1

yy y (9)

where, Cxy = E[xyT ] = Cx and Cyy = E[yyT ] = Cx +σ2
H0

I.

Thus, the obtained MMSE estimate of the PU signal is

given by;
x̂ =Cx(Cx +σ2

H0
I)−1y (10)

Now, the NP detector decides H1 if

L(y) =

1

[(2π)
N
2 |Cx +σ2

H0
I|

1
2 ]

exp{− 1
2

yT (Cx +σ2
H0

I)−1y}

1

[2πσ2
H0

I]
N
2

exp{− 1

2σ2
H0

I
yT y}

> γ. (11)

By taking logarithm and retaining only the data dependent
terms, the obtained test statistic is represented as:

T (y) = yT 1

σ2
H0

I

(

1

σ2
H0

(Cx +σ2
H0

I)C−1
x

)−1

y,

= yT Cx(Cx +σ2
H0

I)−1y. (12)

Using equation (10), the above equation is reformulated as:

T (y) = yT x̂ > γ ′′. (13)

In scalar format, the decision statistic can be given by;

T (y) =
N−1

∑
n=0

y[n]x̂[n]. (14)

The above decision test statistic clearly shows that, the cor-

relation of the received signal with an estimate of the PU

signal is used for the decision making.
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Figure 3. ROC plot with N = 10 at different SNR

values for the proposed algorithm under Rayleigh

fading scenario.

0 0.02 0.04 0.06 0.08 0.1

P
fa

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

Ana, N=5

Sim, N=5

Ana, N=10

Sim, N=10

Ana, N=15

Sim, N=15

Figure 4. ROC plot at SNR = 10 dB with differ-

ent values of N for the proposed algorithm under

Rayleigh fading scenario.
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Figure 5. Pd vs. INR with N = 10 at different SIR

values for the proposed algorithm under Rayleigh

fading scenario.

4.2 Energy detection under Rayleigh fading

scenario

In this subsection, we have considered a more practical sce-

nario where the PU signal is affected with Rayleigh fading.

Here, the received signal is formulated as:

y[n] = h[n]s[n]+ z[n]+w[n]. (15)

The PU signal channel h[n] is considered as a non - causal
linear system that has the known preamble signal sp[n]. The
received signal y[n] is modeled as a linear combination of
transmitted samples sp before and after n. We have,

y[n] = sp(n− k)h(k)+ sp(n− k+1)h(k−1)+ . . .

sp[n+ k−1]h[−k+1]+ z[n]+w[n]. (16)

To find h[k], based on the assumed Bayesian linear model

the received signal vector y is expressed as:

y = Aθ + z+w, (17)

where, z = (z[0],z[1]......z[N − 1])T , w = (w[0],w[1]......w[N −

1])T , θ is a k× 1 random vector and A is N × k known ob-

servation matrix given as:

A =







sp(−k) . . . sp(0) . . . sp(k−1)
.
.
.

.

.

.
.
.
.

sp(n− k) . . . sp(n) . . . sp(n+ k−1)






. (18)

Now, considering equation (17), we have,

x = Aθ ≈ N (0,ACθ AT ), (19)

As stated earlier, both the residual SI and noise are assumed

to be white, using equation (10) we compute the MMSE

estimate of the PU signal x as:

x̂ = ACθ AT (ACθ AT +σ2
H0

I)−1y. (20)

If the PU spectrum is considered flat under Rayleigh fading

scenario then we can consider Cθ = σ2
s I and further, the test

statistic is modeled as:

T (y) = σ2
s yT AAT (σ2

s AAT +σ2
H0

I)−1y. (21)

With using matrix inversion lemma: (A + BCD)−1 =
A−1 −A−1B(DA−1B+C−1)DA−1, and let A = σ2

H0
I, B =

σ2
s A, C = I and D = AT , the text statistic is represented as:

T (y) = σ2
s yT AAT





1

σ2
H0

I−
1

σ4
H0

σ2
s A

(

σ2
s AT A

σ2
H0

+ I

)−1

AT



y, (22)

for large value of N, AAT ≈ (N
2

I). Thus,

T (y) =
C

N
yT AAT y, (23)

where, C = Nσ2
s

N
2 +σ2

H0

. Hence, Pf a and Pd obtained are;

p f a = pr(T (y)> γ ′′ : H0),= exp

{

−
γ ′′

Cσ2
H0

}

, (24)

and

Pd = pr(T (y)> γ ′′ : H1),= exp

{

−
γ ′′

2σ2
H1

}

. (25)

Assuming Pf a fixed to some constant value, the threshold

value γ ′′ is obtained as:

γ ′′=CσH0
ln(

1

Pf a
). (26)

5 Simulation performance

This section focuses on investigating the detection perfor-

mance analysis for the proposed algorithms in FD CR sys-

tem shown in Fig. 1 through MATLAB simulation. The pa-

rameters that we use to evaluate the performance of afore-

mentioned proposed algorithms are number of samples N,

signal-to-interference ratio (SIR), interference-to-noise ra-

tio (INR), and signal-to-noise ratio (SNR). The simulation

performance of the proposed sensing techniques is carried

out using 5000 numbers of monte carlo simulation. Fig-

ure 3 to Fig. 6 summarizes the performance study of the

proposed energy detector for PUs signals having arbitrary

covariance matrix in Rayleigh fading scenario. In addition,

we compare the performance of the proposed sensing algo-

rithm having arbitrary PU signal covariance matrix under

AWGN and Rayleigh fading scenario with the benchmark

scheme and the compared detection performances are pre-

sented in Fig.7 and in Fig. 8.

It is inferred from Fig. 3 and Fig. 4, that, target detection

probability (Pd ≥ 0.9) for the applicability of the proposed

sensing algorithm in upcoming FD CRN in 5G wireless

communication systems can be achieved with N = 10 and

SNR = 10 dB. Figure 5 and Fig. 6 also indicate the conse-

quence of residual SI and they show that when SI increases,

SIR decreases and Pd also deteriorates. From the compar-

ative studies illustrated by Fig. 7 and Fig. 8, it is clearly
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Figure 6. Pd vs. INR at SIR = 8 dB with differ-

ent values of N for the proposed algorithm under

Rayleigh fading scenario.
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Figure 7. Pd vs. INR comparison of basic NP

and proposed detection algorithm under AWGN

and Rayleigh fading scenario with Pf a = 0.01 and

N = 10.
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Figure 8. Pd vs. Pf a comparison of basic NP and

proposed detection algorithm under AWGN and

Rayleigh fading scenario with SNR = 10 dB and

N = 20.

concluded that the proposed estimator correlator detector

gives sensing performance near to the benchmark optimum

NP detector approving its applicability in future wireless

communications.

6 Conclusion

An accurate and efficient spectrum sensing is the funda-

mental requirement of FD CRNs for future 5G wireless

applications. In this work, we investigated the estimator-

correlator based energy detector for spectrum sensing with

PU signal uncertainty in FD CRNs under both AWGN and

Rayleigh fading scenario. The simulated and the analytical

results are found close to each other. Performance evalu-

ations of proposed algorithm clearly show that an optimal

detection performance could be achieved at a moderately

low SNR value of 10 dB using 10 samples and it also gives

sensing performance near to the benchmark optimal NP de-

tector performance approving its applicability in next gen-

eration wireless communication systems.
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