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Abstract 
 

This paper proposes an optimization method of sensor 

disposition for geometrical localization with a probability 

based algorithm.  This method can be applied to any 

practical environment.  The proposed method makes use of 

the likelihood function of the location and the Cramer-Rao 

lower bound to obtain the expected accuracy distribution, 

and provide optimized sensor disposition in accordance 

with application scenarios.  The experiment with IEEE 

802.11 standards based devices demonstrates that the 

optimization of sensor disposition reduces the mean error 

by 50 percent.  

 

1. Introduction 
 

Estimating and tracking the location of a target device is 

currently a crucial technology for many applications such 

as wireless sensor networks, cellular networks, and the 

Internet-of-Things (IoT).  A huge amount of effort has been 

invested to develop technologies for localizing a radio 

transmitter geometrically [1]-[3].  Geometrical localisation 

usually takes two steps.  In the first step, geometrically 

related information is measured by such techniques as 

received-signal-strength-intensity (RSSI), time-of-arrival 

(TOA), and time-difference-of-arrival (TDOA).  In the 

second step, the location is estimated on the basis of 

trilateration, triangulation, fingerprinting, particle filter, or 

a probability based algorithm.  A probability based 

algorithm can exploit the least square (LS) method or the 

maximum likelihood (ML) method, combined with the 

maximum a posteriori (MAP) method.  

 

The radio environments of localization are various, e.g. 

indoor or outdoor, tiny room or whole city, and line-of-

sight (LOS) scenarios such as those in a rural region or non-

line-of-sight (NLOS) scenarios such as those in a crowded 

city.  Propagation characteristics and measurement 

limitations differ in accordance with these environments, 

so the localization scheme and sensor disposition should be 

chosen on the basis of each environment.  In practice, an 

estimation area is complicated and restricted to a certain 

room, area, or shape.  The measurement error distribution 

depends on the target’s relative location to the boundary 

and sensor disposition. Thus, sensor disposition has a huge 

effect on estimation accuracy.  While many authors have 

investigated the effects of sensor disposition and relative 

target position [4], [5], their assumption of the estimation 

area is limited to an isotropic plain. 

 

This paper aims to provide an analytical method of 

optimizing sensor disposition in a specified restricted area.  

The proposed method utilizes the likelihood function of the 

target location and Cramer-Rao lower bound (CRLB) as a 

function of the target’s relative position, and calculates the 

expected accuracy of each target location.  Then an 

optimized sensor disposition is obtained in accordance with 

a specified application scenario.  This method is about a 

probability based algorithm and can be applied to any RSSI, 

TOA, and TDOA technique. 

 

The rest of the paper is organized as follows.  Section 2 

describes the mathematical formulation of the proposed 

method.  In Section 3, experimental results are presented. 

Then Section 4 summarizes this paper. 

 

2. Optimization of sensor disposition 

 

2.1 Likelihood function of location 
 

The localization technique of this paper is that an unknown 

location of a target node is estimated by exploiting 

measured data at sensor nodes.  The location of sensor 

nodes are known in advance.  Here, ! = (", #, $)%&is the 

location of the target node, and !' = ("' , #' , $')%  is the 

location of the n-th sensor node (&* = 1,2,+ ,-).  Both the 

target device and sensor node are assumed to be within a 

location estimation area U with the size of X0 Y0 Z0. .(!) = [/0(!),/3(!), �& ,/4(!)]%  is the measured 

data set, and /'(!) denotes the measured data of the n-th 

sensor node when the target node location is !.   

 

A. RSSI technique 

 

In the RSSI technique, a statistical propagation model on 

RSSI in the location estimation has to be established. A 

model that can be applied to various situations is provided 

as a two-layered model [6], [7] 

 /5'(!) = 6 7 8'(!)9: 

8'(!) = ;! < !'; 
(1) 

 

where ;7;  denotes the Euclidean norm operator over a 

vector.  The parameter 6 is a constant proportional to a 



received power at a certain distance, and the parameter > 

is a power attenuation factor.  These parameters are specific 

to an environment and radio frequency and need to be 

determined by a prior measurement campaign or by an 

extended algorithm that can estimate all parameters 

together, e.g. an expectation maximization method, a 

particle filter, or an iterative algorithm [7].   

 

In practice, RSSI measurements vary randomly because of 

multipath fading.  Rayleigh fading is viewed as a 

reasonable model for urban environments when there is no 

dominant propagation along a line of sight, and its 

statistical measurement distribution model is expressed as 

 ?(@A|B) = 1
/5'(!) C

DE FAFAG (H)I (2). 

(2) is the probability of that n-th sensor obtain /' when the 

target is at ! .  When the received powers /'  are 

independent in each sensor, the joint likelihood function for 

the measurement set of multiple sensors is expressed by: 

 

J(!) = ?(/0, /3, � ,/4|!) =K?'(/'|!)
4

'L0
 (3).

The ! that maximize J(!) in (3) is the estimated location 

when using the RSSI technique. 

 

B. TOA technique 

 

In the TOA technique, the time of arrival is measured at 

each single sensor. Assuming that a signal is emitted at 

time 0, the measured data /'(!), which is the time of 

arrival at the n-th sensor node, can be written as: 

 

 /'(!) = 8'(!)M N O' (4) 

 

where c is the speed of light, and O' is the measurement 

error [2], [5].  When O'&~&P(Q, R'3)  can be modelled as 

additive white Gaussian noise with the mean of zero and 

the standard deviation of R' , the probability density 

function for a single TOA measurement is written as: 

 ?(@A|B) = 1
S2TR' C"? U9

@A(B)9VA(H)W3XAY Z (5). 

The joint likelihood function for all sensors can be derived 

by substituting (5) to (3). 

 

C. TDOA technique 

 

In the TDOA technique, the difference in the distances of 

two sensors from the target node is calculated by two TOA 

measurements.  The measurement equations become: 

 \^_(!) = /^ </_ N O^_  
`, a = 1,2,+ ,.&&;    ` b a O^_&~&c(Q, R2̀ N Ra2) 8^_(!) = d!^ < !_d 

(6) 

where independent distributed Gaussian noise is assumed.  

Note that the measurement noise O^_ = O^ N O_  is 

composed of the noises at two sensors and has the 

covariance R 3̂ N R_3. 

 

A single TDOA measurement defines a hyperboloid of 

possible target locations with the two sensors as foci.  From 

N measurement sets, (N-1) non-redundant TDOAs can be 

obtained, and there are N(N-1)/2 distinct TDOAs.  The 

likelihood function of complete data sets can be expressed 

as [4]: 

 

 J(!) = 1
(2T)4e3f8C\&(g) C"? h9

ij(k)9l(k)W mn
3g o 

j(k) = p\03, \0q, + , \^_ , + , \(490)4r% 

l(k) = p803, 80q, + , 8^_ , + , 8(490)4r% 

(7) 

 

where C is the covariance matrix of the measurement set. 

 

2.2 Expected accuracy distribution 
 

The proposed method evaluates the localization accuracy 

by the expected values of mean square error.  When 

measurement values can be considered as unbiased 

estimators that distribute around true values, the mean 

square error is equal to the variance.  The minimum error 

variance is provided by using CRLB [4], [5]. It is calculated 

from the likelihood function of ! as follows: 

 

 s(!) = Rtuvw3 = 1
x hyz&J{}&J(!)z! �3o
= 1
x hyz� J{} ?(/'|!)z! �3o

!

(8). 

 

Because (8) is a function of the target’s location !, this 

provides the expected accuracy distribution for estimation 

area U.  Besides, the n-th measured data depends on the 

sensor position !' ; thus, (8) can be regarded as the 

function of sensor disposition � = [!0, !3, + , !4 , ]. 
 

2.3 Proposed sensor disposition optimization 
 

Eq. (8) indicates that the optimized sensor disposition can 

be calculated by minimizing a specific metric related to s(!).  The optimization target value is a statistical value 

such as mean, maximum, or percentile error over 

estimation area.  For the case of mean, the objective 

function becomes: 

 �(�) = /C�*B s(!,�)! (9). 

The optimized sensor dispositions are the ones that 

minimize (9), and this problem can be written as: 



 ���������&�� �(�)& (10). 

For the minimization, one can exploit general nonlinear 

programming method such as the conjugate gradient 

method, the quasi-Newton method, multiplier method, or 

successive quadratic programming method. 

 

Figure 1 shows the cumulative distribution function (CDF) 

of Rtuvw  at all places in a certain room.  When the 

optimization target value is mean, ����� at ��� � Q�� is 

smaller than others, while �����  at CDF>0.8 are larger 

than others.  This means that the accuracy is best at a 

general place, while at several places the error is larger.  In 

contrast, for the case of max, ����� at CDF=1.0 are smaller 

than others while larger at CDR<0.95.  This means that 

performance is stable at any place, while accuracy is not as 

good as others.  Thus, the optimization target value should 

be chosen in accordance with the application scenario. 

 

 

Figure 1. Example of CDF of ����� . 

 

3. Experimental results and discussion 

 

3.1 Setup and application scenario 
 

We evaluate the performance of sensor disposition 

optimization.  Assume an application scenario for 

localizing a Wi-Fi enabled smartphone in a meeting room 

and determining the seating arrangement.  The RSSI 

technique is selected because it is suitable for indoor 

localization.   All sensor nodes and target devices are based 

on IEEE 802.11 standards.   A Raspberry Pi with a USB 

Wi-Fi dongle is used as a sensor node and receives Wi-Fi 

packets and measures RSSI using Wireshark.  

 

The experiment was conducted in a meeting room whose 

size is ���&� × ��2�&m (Figure 2).  A table, 1��&� × ���&m 

in size, is placed at the center of the room.  Eight 

smartphones are used as target devices.  Four different 

models are used in order to guarantee versatility in the 

smartphone model.  Two smartphones of each model are 

placed both on and under the table to mimic practical 

position during a meeting.  The number of sensors, N, is 

four, and the performance of two sets of sensor disposition, 

i.e. with and without optimization are compared.  The 

sensors without optimization are deployed on the wall as a 

reference disposition. With an aim to determine the seating 

arrangement, the optimization target area is set around the 

table with a margin of 0.4 m. Moreover, accuracy priority 

is equal for all seats; thus, the optimization target value is 

set as mean.  

 

 

Figure 2. Experimental setup. 

 

3.2 Sensor disposition optimization 

 

Figure 3 shows a propagation characteristic of smartphones 

for an indoor environment.  For versatility in indoor 

localization, these parameters were previously obtained in 

a different room with three different smartphones (iPhone 

5, Xperia Z5, and Galaxy S7 Edge). The propagation 

constants in (1) were obtained as 6 = 1��1 × 1Q9�, > =1�2 . 

 
Figure 3. Received singal power in relation to distance. 

 

  
(a) Reference disposition      (b) Optimized disposition 

Figure 4. Expected accuracy distribution. 



By substituting these parameters into (1) to (3), the joint 

likelihood function can be obtained.  The optimised sensor 

disposition can be obtained by (10), using the quasi-

Newton method for optimization.  Figure 4 shows the 

expected accuracy distribution of the optimized and 

reference sensor dispositions.  The standard deviation Rtuvw of (8), i.e. expected error, is expressed by color.  The 

mean errors within U of the reference and optimized sensor 

dispositions are 3.0 m and 1.5 m, respectively.  This result 

means that the optimization can reduce mean error by 50%. 

 

3.3. Experimental evaluation 
 

Both optimized and reference disposition sensors are 

deployed at the same time.  The RSSI of Wi-Fi packets 

from the smartphones was measured for 1 hour. Because 

each packet contains a MAC address and sequence number, 

this information can be utilized as an identifier to 

distinguish each packet.  Thus, the localization is executed 

for every individual received packet. 

 

The samples of individual localization results are shown in 

Figure 5.  The device, the Xperia, is placed under the table.  

Each estimated location for every packet is plotted along 

with the mean result and real location.  The optimization 

can reduce both mean error and dispersion.  The mean 

estimated locations of all devices are shown in Figure 6.  

The mean estimation errors of the reference and optimized 

dispositions were 1.84 m and 0.92 m, respectively.  The 

mean error can be reduced by 50%, the same as predicted 

in Section 3.2.  Although the absolute values of mean error 

are different between expected values and measured results, 

the rate of improvement is the same.  This indicates that the 

proposed method is beneficial in improving the accuracy. 

 

4. Conclusion 
 

This paper proposed an optimization method of sensor 

disposition for geometrical localization with a probability 

based algorithm.  In the experiment with IEEE 802.11 

standards based devices and the RSSI based technique, the 

optimization of sensor disposition reduced both mean error 

and dispersion of localization results.  The mean error was 

reduced by 50%, which is in good agreement with the 

expected error.  The proposed method can be applied to any 

RSSI, TOA, and TDOA technique. 
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(a) Reference disposition       (b) Optimized disposition 

Figure 5. Individual estimated locations example. 

 

    
(a) Reference disposition       (b) Optimized disposition 

Figure 6. Mean estimated locations of all devices. 


