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Abstract

A possible general approach to the analysis of dispersion
equations (DEs) of electromagnetics is presented. The
method takes into account the known explicit forms of DEs
describing eigenoscillations and normal waves in layered
structures and is based on the development of the notion of
generalized cylindrical polynomials. The approach enables
one to complete rigoroius proofs of existence and determine
domains of localization of the DE roots and validate itera-
tive numerical solution techniques.

1 Introduction

Determination of real and complex waves is reduced to
multi-parameter eigenvalue problems [1]–[3] and then in
many cases (when e.g. the Helmholtz equation admits
closed-form solutions using separation of variables) to dis-
persion equations (DEs). Their complete study is a sophis-
ticated task which requires deep analytical-numerical inves-
tigations. In this work, a major attention is paid to creating
an introduction to a general method that enables obtaining
(sufficient) conditions of the existence and description of
localization of the DE roots providing thus justification for
the methods of determination of oscillations and waves in
multi-layered structures which can be easily implemented
in calculations. The method is based on the studies of
the so-called generalized cylindrical polynomials (GCPs)
aimed in particular to finding zeros of GCPs using different
approaches.

2 Dispersion Equations

For waveguides possessing circular symmetry, like a di-
electric waveguide (DW) or a Goubau line (GL) formed
by several concentric layers of media, all the field com-
ponents of symmetric and nonsymmetric wave can be ex-
pressed [2, 3] via potential function φm(r) which is gener-
ally a linear combination of several cylindrical functions of
order m. This gives rise to explicit forms of the DEs for
(single-layer) DW and GL [3]-[6]

Fd(x)≡ PD(w)J1(x)+ xJ0(x) = 0 (DW), (1)
Fg(x)≡ PD(qw)Φ1(x)−qxΦ0(x) = 0 (GL), (2)

Figure 1. Example for a GCP Fd(x) in DE (1): plots of J0(x)
(green), J1(x) (red), and Fd(x) (black) at ε = 5 and κ = 2 (u =
κ
√

ε−1 = 4) displaying a zero of Fd(x) between neighboring ze-
ros of J1(x) and neighboring zeros of J0(x) and J1(x).

where Jm, Ym and Km (m = 0,1) are the Bessel, Neu-

mann, and Macdonald functions, PD(w) = ε
wK0(w)
K1(w)

, Φ0 =

J0(qx)Y0(x)−J0(x)Y0(qx), Φ1 = J0(x)Y1(qx)−J1(qx)Y0(x),
and the waveguide geometric and material parameters x =

κ
√

ε− γ2, γ = β

k0
, κ = k0a, u = κ

√
ε−1 (β , ε , and k0 are,

respectively, the wave progation constant, permittivity, and
free-space wavenumber), w =

√
u2− x2 = κ

√
γ2−1, and

q = b
a > 1 (a and b are characteristic dimensions of DW

and GL). Straightforward analysis of (1) and (2) demon-
strates that functions Fd and Fg entering DEs have distinct
common features: they are sums of (products of) cylindrical
functions Jm and Φm each having infinitely many alternat-
ing simple positive zeros. The latter yields an immediate
proof (illustrated by Fig. 1 and verified below) of the (suf-
ficient conditions) provoding existence of real roots of the
DEs located between zeros of Jm and Φm (m = 0,1). The
existence, localization, and number of the DE roots are gov-
erned actually by a number of zeros of Jm or Φm that are in-
side the domain x ∈ (0,u) of Fd and Fg; that is, by the value
of parameter u.

3 General Approach

The facts reported above as well as explicit expressions for
the DEs obtained in [2] and [4, 5] for multi-layered DWs
and GLs (open or shielded) suggest that DEs can be repre-
sented in the general form of weighted linear combinations

GN,M(x) =
M

∑
m=1

P(m)(k(m)x)W (m)
N (x) (3)



of the products W
(m)

N = Π
N
n=0I

(m)
n (κ

(m)
n x) of cylindrical

functions I
(m)

n , where P(m)
N (x) are constants or bounded

continuous functions for x > 0 (determined explicitly in
DEs for multi-layered waveguides with circular [4, 5] or
planar [7, 8] symmetry), and κ

(m)
n and k(m) are real param-

eters (quantities depending on parameters of the structure
in a DE). Such functions are referred to as GCPs of order
(M,N).

In order to formulate sufficient conditions that guarantee the
existence of zeros of a GCP and describe their localization,
we will use the following

Statement. Let f j(x) ∈C [a,b], j = 1,2,3 (continuous in a
closed interval [a,b]), f2(a) = f2(b) = 0, and f1(a) f1(b)<
0 or, equivalently, there is one s∈ (a,b) such that f1(s) = 0;
then the equation

f (x)≡ f2(x) f3(x)+ f1(x) = 0

has a root x = x∗ ∈ (a,b).

This statement can be applied to validate a recursive pro-
cedure of proving the existence and determining zeros of
GCPs.

To this end, note that each W
(m)

N (x) has (as a function of
x) infinitely many positive zeros forming a countable set
Z(m)

N =∪N
n=0Z(m)

n being a union of the sets Z(m)
n of zeros z(m)

n,k

(k = 1,2, . . . ) of all I
(m)

n . Elements of Z(m)
n (and Z(m)

N ) de-
pend on the parameter vector κ̄N = (κ

(m)
1 , . . . ,κ

(m)
N ). Next,

represent GCP (3) as

GN,M(x) = P(M)(k(M)x)W (M)
N (x)+GN,M−1(x), (4)

where W
(M)

N (x) vanishes at the endpoints of the inter-
val In,k(m) = (a,b) = (z(m)

n,k ,z
(m)
n,k+1) between every two its

neighboring zeros. Assuming that the parameter vector κ̄N
is such that GCP GN,M−1(x) of order (M−1,N) has a zero
on I(m)

n,k , we can use Statement to conclude that GCP (3) of
order (M,N) also has a zero on this interval.

For a GCP Fg in (2) we can apply this reasoning and State-
ment by setting f1(x)=−qxΦ0(x) and f2(x)=Φ1(x). Then
Fg(x) has a zero between every two neighboring zeros h(1)k

and h(1)k+1 of Φ1(x) as soon as q > 1 is such that a zero of

Φ0(x) belongs to the interval (h(1)k h(1)k+1). The latter condi-

tion can be satisfied because zeros h( j)
k = h( j)

k (q) of Φ j(x)
alternate for different j = 1,2 and form sequences of points
decreasing with respect to q [3, 4]. The conclusion con-
cerning the existence and location of the zeros of Fg be-
tween neighboring alternating zeros of Φ0(x) and Φ1(x) is
perfectly illustrated by Fig. 2.

Existence and analysis of complex oscillations and waves in
terms of the solution to DEs in the complex domain can be
performed using the general approach and results outlined
in [7] and [8].

Figure 2. Zeros of a GCP Fg (black) given by (2) situated
between neihboring zeros of Φ0 (green) and Φ1 (red).

4 Conclusion

We have proposed a method for verifying the existence and
determination of location of roots of the DEs expressed as
weighted sums of products of cylindrical functions. The
results complete mathematical theory of DEs for multi-
layered waveguides possessing circular symmetry and can
be extended to more general structures as well as to deter-
mination of complex waves .
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