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Abstract

The electromagnetic system response distribution due to the
stochastic variation in properties of media such as relative
permittivity and loss tangent, for multiple discrete subdo-
mains of the problem domain, has been estimated by spec-
tral representation of random system parameters . The fi-
nite element formulation for electromagnetics with edge el-
ements are updated to extend the model to include these
stochastic variations. The comparison of numerical results
with Monte Carlo simulation done with large number of
samples implies that the proposed method is computation-
ally efficient and extremely fast.

1 Introduction

Variability in modelling parameters have always been a
challenge in the realization of microwave systems due to
fabrication tolerances and environmental uncertainties. The
material properties of the dielectrics in circuits are not gen-
erally a fixed value as assumed by the mathematical EM
models. There will be a stochastic variation along the ma-
terial body due to the inconsistencies in the fabrication pro-
cess. On the other hand, the operating environment play
an important role in the working of high frequency circuits.
The thermal coefficient of dielectric constant quantifies the
impact of temperature on the permittivitty of a material,
which gives an estimate on the deviation of expected be-
haviour of a microwave circuit with changes in tempera-
ture. [1] Due to the environmental conditions, military sys-
tems such as ballistic missiles, endure frequent temperature
variations. Passive components, such as filters suffer from
unwanted passbands and stopbands shifts with changes in
permittivity, while active components may be pushed to un-
stable regions [2]. The aim of this paper is not to estimate
these tolerance limits, but the effects of the stochasticity in-
troduced in the system parameters due to these tolerances.

The aforementioned deviations are not generally addressed
by EM simulation tools due to the impractical run time
taken by the commonly used Mote Carlo methods. Such
probabilistically varying EM systems can be efficiently
solved in frequency domain by spectral stochastic finite el-
ement method. Analysis of a finite element based system
with the spectral decomposition of probabilistically varying
parameters as a random field is called spectral stochastic fi-
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Figure 1. SSFEM Flow Diagram

nite element method [3]. This is more efficient compared
to other methods in terms of computational time complex-
ity. Stochastic FEM is extensively used in civil and me-
chanical engineering for reliability and risk analysis. How-
ever, stochastic FEM methods for EM problems are less ex-
plored. Material variation is analysed using spectral expan-
sion in FDTD is designed by Edwards et al. [4]. Stochastic
magnetostatics and electrostatic problem are solved using
SSFEM by R. Gaignaire et al. [5]. Magnetostatic prob-
lems with A vector potential formulation involving param-
eter uncertainties are investigated by K. Beddek et al. [6].

This paper proposes an edge element based SSFEM for ma-
terial uncertainties in multiple subdomains in a general fre-
quency domain 3D fullwave EM scattering problem. Nu-
merical analysis has been done by varying complex permit-
tivity of media with different standard deviations and mean,
at two separated regions of the problem domain. The SS-
FEM results are compared to the Monte Carlo results for
validation.
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Figure 2. Problem Domain: D is the complete physical domain
and D{,D;...D,, are subdomains where the stochastic variations
are assumed

2 Formulation

A boundary value problem in the full-wave scattering anal-
ysis with inhomogeneous media is modelled by [7],

1
Vx (—VxE)—kje:E=0 inD (1)
r
Where D is the computational domain with boundary I as
shown in Fig. (2). I" can be a Dirichlet , Neumann or Robin
boundary.

Using tetrahedral edge elements the system equations in eq.
(1) can be reduced to a linear system [K][E] = [b]. Here [K]
is obtained by assembling the individual elemental matrices
[K*] over the entire domain. [K¢] and [b*] matrix entries can
be derived as,

(K] = [M°] + ko &, [T°] ()
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where,
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The material properties of a subdomains Dy, D; ... D,, are
independently random. Any random field over a subdomain
D; can be spectrally expanded using a linear combination of
deterministic spatial functions of standard random variables

[3].

The uncertainty in material in SSFEM is incorporated by
taking €. in (1) as a random field over, either a part of or the
complete problem domain with a known covariance func-
tion [8].
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where {&;} represents the coordinates of realization of the
random field with respect to the eigenpairs of the covari-
ance function, {A;, ¢;(x)} over domain D. It is possible
to truncate the series expansion in eq. (6) to include only
a finite number of significant terms [8]. When there are
multiple regions with different media properties with inde-
pendent random variations, the KLE has to be evaluated for
each of these domains with its covariance function. This
has been represented with the following equation,

8,k(x, 9) = u(x) + i \/qu)ki(x)éki(e) xeDg, B Q
i=1
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&y 1is the discretisation of random media property of do-
main Dy for k=1,2...n, {&} and {A, ¢x(x)} are defined
for the respective regions.

The electric field stochastic variation is unknown, hence it
is represented as a polynomial chaos expansion.
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where P is the number of basis polynomial, d;(x) is the vec-
tor modal coefficients, {;} is the set of standard orthogo-
nal random variables and {¥;(§;)} is a set of orthogonal
polynomials.

The KL expansion has to be substituted instead of the per-
mittivity of the eqn. (1). This has to done carefully such
that since the KL expansion exixts only for the random do-
mains and for each random domain the expansion is dif-
ferent due to the difference in material distributions. Af-
ter proper substitution of equations (6 - 8) in edge FEM
formulation and using the orthogonal properties of polyno-
mial chaos basis by applying Galerkin’s approximation [9],
by which the residue is orthogonally projected to the square
integrable random space, we get the matrix form,
KHTS) (T8 TS | [di] [F
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(10)

On assembling the above elemental formulation over the
domain, the matrix system is obtained as,

(1K) + [1:]) ] = [F3] an

Where [K;| is an NP x NP block diagonal matrix with
[K]nxn as the diagonal block and [7] is an NP x NP ma-
trix obtained by assembling [7;,]. Each of the P blocks of
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Figure 3. Waveguide dielectric fill profile along propagation di-
rection

N x 1 elements in [d] is mapped to the edges in the physi-
cal model. Equations (9 - 11) model physical as well as the
stochastic implications of the EM problem. After solving
the system the stochastic distribution of electric field can
be evaluated using PCE.

In the proposed approach the randomly varying properties
using KLE and the system unknowns represented as a PCE
are introduced into the FEM equations. The solution for
the system is the spectral components of the stochastic re-
sponse, which is used to reconstruct the probabilistic varia-
tions of the system solution as shown in (1).

In order to generate the eigen system for KLE, the finite
element mesh can be reused. The typical element size in
the random field, mesh size is close to half of the correla-
tion length of the covariance function [8]. The KLE has to
be evaluated for each of the stochastically varying region
D; (dielectric slabs in the above example) of the problem
domain. The KLE can be evaluated using a coarser mesh
and interpolated to the required points to increase compu-
tational efficiency. The evaluation of [K| and [7;] has been
done independently. Each N x N blocks in stochastic for-
mulation is calculated by multiplying them with ¢;jx. This
leads to an efficient assembling process of SSFEM matrix.
The sparsity of the assembled matrix helps in storing the
matrix efficiently and achieving fast solution. The block
structure of the matrix also enables solution using fast iter-
ative procedures [10].

3 Numerical Results

A waveguide with 5 dielectric layers is taken as an example
here. The dielectric constant varies along the propagation
direction as shown in Fig 3. This is similar to a sandwich
radome inside a waveguide. The dielectric constant is kept
constant in layers L, L3 and Ls while the permittivity of the
media is varied stochastically in layers L, and L4, hence-
forth denoted by D; and D, respectively. The dielectric
constant is stochastically varied in domains D; and D; in-
dependently with different covariance functions. For D the
complex relative permittivity is varied with a standard de-
viation of 0.24-0.02; and in D, a the complex relative per-
mittivity is varied with a covariance of 0.16 4 0.045;. This
brings around a maximum 25% deviation in the dielectric
constant and 100% deviation in loss tangent.
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Figure 4. Probability distribution of transmission
coefficient(|Sp;|). Comparison of SSFEM and Monte Carlo
method with sample sizes 100,1000, 5000 and 10000.
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Figure 5. Probability distribution of reflection coefficient(| Sy ).
Comparison of SSFEM and Monte Carlo method with sample
sizes 100,1000, 5000 and 10000.
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Figure 6. Probability distribution estimation of |Sy;| and |Sy|
using lossless dielectrics in the multi layered waveguide model.
SSFEM and Monte Carlo with 10000 samples



Monte Carlo method can be used for the stochastic esti-
mation of the probability distributions of transmission and
reflection coefficients. Monte Carlo method is impractical
even for small number of samples since 3D EM problems
contain large number of mesh elements. SSFEM can be
used to efficiently predict the probability distribution. In
SSFEM, Hermite polynomials are used for numerical im-
plementation of polynomial chaos expansion of the vari-
ation in dielectric constant. The SSFEM use KLE to build
the matrix system in eq. (11) and solves it only once in con-
trast to Monte Carlo where the whole process is repeated a
large number of times. The Fig. (4) and (5) show a compar-
ison between the probability distribution of the magnitude
of transmission coefficient |Sy;| and reflection coefficient
|S11| estimated using SSFEM and Monte Carlo method with
different sample sizes. Fig (6) shows the distribution of
|S11] and |S21| for the same system without dielectric losses.

The SSFEM results match closely with those predicted us-
ing Monte Carlo method with 10000 samples. This is
achieved with tremendous saving in the running time. In
order to solve the SFEM problem for fixed value of dielec-
tric constant is 18.71 seconds using MATLAB on a 3.6 GHz
processor - 32 GB RAM system. A drastic improvement
in the execution time has been observed when using SS-
FEM, over Monte Carlo method for same accuracy. Aver-
age execution time for the above problem using SSFEM is
33.24 seconds which is less than twice the runtime required
for deterministic FEM, while an an intrusive Monte Carlo
method took 189.62 seconds for 100 samples and 13178.79
seconds for 10000 samples.

4 Conclusions

The spectral stochastic finite element formulation for edge
element based electromagnetic problems to estimate the
stochastic variation of S-parameters with respect to the per-
mittivity variations arising due to the fabrication and en-
vironmental tolerances, over multiple subdomains, is pre-
sented. Application of SSFEM on a full 3D waveguide
problem with material variation is demonstrated by the nu-
merical analysis of a waveguide filled with multiple layers
of dielectrics with stochastically varying complex permit-
tivity. The results are validated by comparing the distribu-
tion obtained with SSFEM with the output of Monte Carlo
analysis. The SSFEM computes the probability distribution
with variations of material properties over discrete subdo-
mains highly efficiently, within twice the runtime for a sin-
gle run of the deterministic problem, while the Monte Carlo
simulation took several times the runtime of a sigle run, for
the same level of accuracy. SSFEM can therefore be ap-
plied to microwave circuits involving various uncertainties
over multiple subdomains.
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