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Abstract 
 
We propose the first implementation of learning 
algorithms on LoRa devices operating in a real 
LoRaWAN network. The goal of learning intends 
here to diminish collisions with other RF signals 
present in the ISM band. We explain that the proposed 
solution, named IoTligent, add neither network 
overhead so that no change is required to LoRaWAN, 
nor processing overhead so that it can be run in the 
devices. Experimental measurements done in a real 
LoRa network show that IoTligent device battery life 
can be extended by a factor 2 in our experiment. 
 

1. Introduction 
 

We propose the first implementation of learning 
algorithms on devices deployed in a real LoRa 
network in order to make Internet of Things (IoT) 
devices mitigate collisions with other Radio Frequency 
(RF) signals present in the ISM band. The proposed 
implementation runs in the 868 MHz band but could 
be used in any other ISM band, whatever the country. 
Any other IoT LPWAN (Low Power Wide Area 
Network) standard than LoRa could be targeted as 
soon as channel assignation is not imposed by a 
central node in the network. We name this learning 
decentralized approach, e.g. on device: IoTligent. 
 

2. Issue, hypothesis and decentralization pros 

2.1. Collisions vs autonomy 

Collisions is the main drawback of IoT in terms of 
battery autonomy at first level, but also of IoT 
viability itself in the ISM bands. Indeed collisions 
may cause (many) retransmissions at the cost of a 
lower battery lifetime and RF contention increase, or 
even worse a total failure of the device. 

2.2. Hypothesis 

IoTligent imposes no change on normal LoRaWAN 
protocol [1]: no extra retransmission, no extra-power 
to be sent, no data to be added in frames. Only 

condition is that the proposed solution should work 
with acknowledged mode for IoT. Underlying 
hypothesis is that, "channels" (there are no official 
channels in ISM bands) occupancy by surrounding 
radio signals (IoT or not) is not equally balanced. In 
other words, some ISM sub-bands are less occupied 
or jammed than others, but it is not possible to predict 
it in time and space, so the need to learn on field. 

2.3 A device-side solution for spectrum management 

IoTligent learning algorithm is a kind of artificial 
intelligence (AI) algorithm that is so simple to 
implement that it can be applied at IoT device side 
with almost no extra overhead (processing, memory, 
energy consumption). It is indeed much more 
efficient to implement radio collision mitigation 
approaches on device side as devices may be quite far 
from gateways, and suffer from different radio and 
jamming/co-existence conditions. But they are the 
place where watts count at transmission, and where 
sensitivity should be the best at reception, as no extra-
processing can be afforded. 
 
3. IoTligent: learning for non coordinated and 
decentralized IoT dynamic spectrum access 

3.1 Proposed solution 

IoTligent is based on reinforcement learning 
algorithms such as those already studied [2] and 
experimented on real radio signals for Cognitive 
Radio and especially Opportunistic Spectrum Access 
(OSA) [3]. We assert that, as for OSA, IoT spectrum 
access issue can be modeled as a Multi-Armed Bandit 
(MAB) problem. Reinforcement learning is based on 
a feedback loop that gives a success measure of 
experience. In the IoT context we propose to use the 
acknowledgement (ACK) sent by the gateway to the 
IoT device. First AI experiments on IoT radio signals 
have been done in laboratory conditions with USRP 
on emulated IoT signals [4], using Upper Confidence 
Bound (UCB) algorithms that have been the first 
derived to solve the MAB issue [5]. 



3.2 Advantages of the proposed solution 

The main advantages of IoTligent are: 
 implementation and execution require very low 

processing and memory overhead so that it is 
possible to add it in IoT devices at no money cost, 
negligible complexity (processing, hardware, 
memory) and extra-energy consumption overhead, 

 using these learning algorithms never gives worse 
results than a state-of-the art random solution [6], 

 no coordination is required between devices (see 
[6] and [7] for discussion about this issue), 

 as soon as a device is planned to receive an 
acknowledgment, no overhead is added neither in 
terms of protocol nor extra bits to be put into the 
LoRaWAN frames in uplink or downlink. 

3.3 Analysis of collisions 

Radio collisions will be the weak point of LPWAN 
IoT networks operating in the license free bands such 
as ISM bands. They may occur with other LoRa 
devices or any other IoT radio signals using another 
IoT radio standard (SigFox, Ingenu, Weightless, etc.). 
Each IoT standard uses indeed its own rules for 
channeling, bandwidth, user repartition, etc. 
Moreover, other radio signals present in the ISM band 
which are not IoT signals may also interfere. 
Unlicensed band indeed, does not mean un-ruled band 
(duty cycle, power limit, etc.), but it is by definition 
more exposed to the non-respect of these few rules. 
 

4. Implementation details 
 
The implementation of the learning algorithm we 
propose in this paper is decentralized, e.g. it takes 
place only on LoRa device side. As stated earlier, no 
other aspect of the LoRaWAN network is impacted. 
We explain briefly below the LoRaWAN network 
side configuration. 

4.1 System description 

A LoRaWAN network, as any other IoT network, can 
be summarized in 4 main elements: 
 LoRa devices (our devices run IoTligent), 
 LoRa gateway(s) receiving all LoRa radio signals 

in their range, 
 A Lora Network Server (LNS) that discriminates 

devices subscribing to its network from others, 
 An Application Server (AS) that receives the data 

sent by devices and sends back an 
acknowledgment to them (mandatory here). 

4.2 Device side 

We use a Pycom [8] composed of an Expansion Board 
and a LoPy module which can support LoRa wireless 

connectivity. Pycom is programmed in Python 
language. The frequency channels used in the 
experiments are those authorized in the country of 
experimentation (e.g. France). Three channels are 
usually used in Europe for uplink (UL) with a duty 
cycle of 1%: {868.1 MHz, 868.3 MHz, 868.5 MHz}. 
IoTligent is completely agnostic to the number of 
channels to be used and can be used in any country. 

4.3 Network side 

We have access to the LNS provided by Acklio 
Company. Acklio has several gateways in the town of 
Rennes where trials have been made. LNS sends the 
received messages to an AS which is a Linux server 
in the cloud. AS is running a Python program that 
enables to display data and metadata (e.g: frequency, 
time of reception, etc.). This programs also contains 
instructions in order to send an acknowledgment to 
the device, using in downlink (DL) the same 
frequency used by the device at UL. 
 

5. Implementation  

5.1 Device side 

Based on-line examples [8] we use LORAWAN mode 
with an Over-The-Air-Activation (OTAA) using 
app_EUI and app_key keys: 

lora=LoRa(mode=LoRa.LORAWAN,region=LoRa.EU868) 

lora.join(activation=LoRa.OTAA, auth=(app_eui, 
app_key), timeout=0) 

Transmit channel frequency is then chosen in a set of 
N channels which is set here at: 

N = 3 

Indeed, we use standard Europe UL channels with the 
following frequency table: 

tabFreq =[868100000 , 868300000 , 868500000] 

IoTligent device infinite while loop is started, running 
the algorithm presented in next section and [2] in 
order to choose which frequency to be selected at each 
iteration before executing a send operation. ACK is 
then expected from the network side in non blocking 
mode so that when ACK is not received, devices just 
updates its learning data and still goes on.  

5.2 Network side – Lora Network Server 

Devices should be declared to LNS with the at least 
following information: 
 devEUI : ID of the device obtained by executing a 

« get_id.py » program from [8] on the Pycom 
device itself. 

 appEUI : which should correspond to app_eui 
chosen in the pycom device, 



 appKey: which should correspond to app_key 
chosen in the pycom device, 

 other parameters are let by default at SF=12 
(spreading factor), and bandwidth BW=125kHz. 

 

The address of the AS is also specified in Connectors, 
as well as the mode used to send data between LNS 
and AS (http callback chosen here).  

5.3 Network side – Application Server 

AS runs a Python program that receives data from the 
LNS, as well as LoRa metadata with all parameters of 
LoRaWAN transmission (frequency, SF, BW, time of 
arrival, etc.). This program also sends an 
acknowledgment message to the device in DL. First 
acknowledgment attempt is sent by default at the 
same frequency than the message transmitted by 
device it answers to. Then we block any other 
retransmission. This is exactly what is necessary for 
the learning of IoTligent: 
 use same channel in both UL and DL, 
 avoid retransmission in order to save batteries of 

devices on the one hand, and radio frequency 
overload on the other hand. 

 

6. Learning algorithm in Pycom device 
 
Learning algorithm used in IoTligent are (any) bandit 
algorithms, such as those used at first time for 
Cognitive Radio dynamic spectrum access in [2] and 
proposed in Python library [9]. We take here the 
example of UCB algorithm [5]. We have chosen these 
algorithms for their ease of implementation. Only 
data necessary to be stored for UCB algorithm are: 
 an iteration index initialized at 0: it, 
 a table of size N (the number of channels, 3 in this 

implementation example, but it could be 
arbitrarily high) for the number of times each 
channel has been chosen: Tk[] 

 another table of size N for the empirical mean of 
success of each channel: Xk[] 

 

From the learning algorithm point of view, a success 
occurs when a device receives an ACK from the IoT 
network, which means that currently used frequency 
channel did suffer no collision both in UL and DL. 
Otherwise, a failure occurred. Update of selected 
channel empirical mean Xk is reconstructed easily 
from number of activations and previous Xk stored 
value. 
 

Then after initialization phase where each channel is 
selected alternatively once, UCB algorithm really 
starts [2] . It consists for each iteration in choosing the 
frequency channel with greatest index Bk, where Bk = 
Xk + Ak, where Ak is a bias computed for each channel 

like this in a for loop on i index, and with alpha the 
UCB parameter that sets the exploration vs. 
exploitation trade-off [2]: 
 

Ak[i] = math.sqrt(alpha*math.log(it)/Tk[i]) 

IoTligent channel selection is then on greatest Bk [2]: 

for i in range(0,N): 
   Bk[i] = Xk[i] + Ak[i] 
   if Bk[i] > max: 
       max = Bk[i] 
       freq = tabFreq[i] 
 

7. Results 
 

Real experiments have been done on a real LoRa 
network currently deployed with 3 channels. More 
channels are expected to be used in the future, 
inducing no implementation difference (only 2 extra 
numbers to be saved by added channel). We now look 
at results obtained on IoTligent device, for 129 
transmissions done every 2 hours, so an 11 days 
period. Figure 1 shows the evolution of Tk index 
through time, e.g. the number of time each channel 
has been selected by the learning algorithm through 
time. In the figures, black curve is for channel 0 
(868,1 MHz), blue curve for channel 1 (868.3 MHz) 
and red curve for channel 2 (868.5 MHz). 
 

 
Fig. 1 – Tk index evolution through time 

 

Figure 2 gives the empirical mean Xk experienced by 
the device on each of the 3 channels. Each peak 
corresponds to a LoRa successful bi-directional 
exchange between device and AS: from device 
transmission, to ACK reception by the device. 
 

 
Fig. 2 – Xk Empirical mean evolution through time 



We can see that channel 1 gives the best results, 
before channel 2, but channel 0 always failed in 
sending back an ACK to the device. Each peak in 
figure 2 reveals a successful case where ACK has 
been received by IoTligent device. Figure 3 gives end 
results after 11 days. We can see that channel 0 has 
been tried 29 times with Sk[0] = 0 success (e.g. no 
ACK received by the device). So learning algorithm 
made the device use 61 times channel 1 with Sk[1] = 
7 successful bi-directional exchanges, and 39 times 
channel 2 with Sk[2] = 2 successes. This corresponds 
to 7 (respectively 2) peaks of Xk[1] (respectively 
Xk[2]) on figure 2.  
 

Tk[0] = 29 Tk[1] = 61 Tk[2] =  39 
Xk[0] = 0.0 Xk[1] = 0,115 Xk[2] = 0,051 
Sk[0] = 0 Sk[1] = 7 Sk[2] = 2 

 

Fig. 3 – Results at the end of the experiment 
 
Empirical mean gives the vision the device obtained 
from the channels, e.g. a mean probability of 11,5% 
of successful bi-directional connection for channel 1 
and 5% for channel 2, whereas channel 0 never 
worked from the device point of view. With a normal 
device, e.g. a non IoTligent device, a random access 
is done, trying once over 3 times on each channel, for 
a global average successful rate of 5,5%.  
 
It is important to note that here learning algorithm is 
mostly in its exploration phase but is learning very 
fast. Only during last 2 days of the experiment indeed, 
channel 1 has already been used 4 times more than 
channel 0 and 2,5 times more than channel 2, which 
means that learning is already effective. As proven for 
UCB algorithms [2][3], channel 1 will be more and 
more selected so that global success will converge to 
percentage of success of the best channel which is 
11,5% (this estimate can be considered as a good 
evaluation as it is based on 61 trials). In other words, 
this means that 15 success can be expected in the long 
term over the same period of 11 days with IoTligent. 
On the contrary normal devices will never improve 
and stay in current average, e.g. 7 successful 
transmission on the same period duration.  
 
In order to have the same frequency of successful 
transmissions, normal devices should consequently 
transmit twice more often, which has 2 negatives 
impacts. First is that normal IoT devices autonomy 
will be twice less than IoTligent devices. Second but 
not least is that devices will occupy twice more radio 
channels, hence contributing to increase even more 
risks of radio collisions and IoT band congestion.  
 

8. Conclusion 

We describe in this paper the implementation of 
learning algorithms on devices deployed in a real IoT 
network. Implementation on LoRa devices in a real 
LoRaWAN network is demonstrated and named 
IoTligent. As far as we know, it is the first 
implementation of decentralized spectrum learning 
for IoT wireless networks. Even if current IoT 
networks are not densely populated of devices, 
medium and even short term forecast predict a high 
number of devices to overcrowd ISM unlicensed 
bands. IoTligent approach is then a solution to extend 
IoT devices battery life, which is a key performance 
indicator in IoT eco-system. 
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