
URSI AP-RASC 2019, New Delhi, India, 09 - 15 March 2019

IoTligent: First World-Wide Implementation of Decentralized Spectrum Learning for IoT

Wireless Networks

Christophe MOY

Univ Rennes, CNRS, IETR - UMR 6164, F-35000, Rennes, France, christophe.moy@univ-rennes1.fr

Abstract

We propose the first implementation of learning
algorithms on LoRa devices operating in a real
LoRaWAN network. The goal of learning intends
here to diminish collisions with other RF signals
present in the ISM band. We explain that the proposed
solution, named IoTligent, add neither network
overhead so that no change is required to LoRaWAN,
nor processing overhead so that it can be run in the
devices. Experimental measurements done in a real
LoRa network show that IoTligent device battery life
can be extended by a factor 2 in our experiment.

1. Introduction

We propose the first implementation of learning
algorithms on devices deployed in a real LoRa
network in order to make Internet of Things (IoT)
devices mitigate collisions with other Radio Frequency
(RF) signals present in the ISM band. The proposed
implementation runs in the 868 MHz band but could
be used in any other ISM band, whatever the country.
Any other IoT LPWAN (Low Power Wide Area
Network) standard than LoRa could be targeted as
soon as channel assignation is not imposed by a
central node in the network. We name this learning
decentralized approach, e.g. on device: IoTligent.

2. Issue, hypothesis and decentralization pros

2.1. Collisions vs autonomy

Collisions is the main drawback of IoT in terms of
battery autonomy at first level, but also of IoT
viability itself in the ISM bands. Indeed collisions
may cause (many) retransmissions at the cost of a
lower battery lifetime and RF contention increase, or
even worse a total failure of the device.

2.2. Hypothesis

IoTligent imposes no change on normal LoRaWAN
protocol [1]: no extra retransmission, no extra-power
to be sent, no data to be added in frames. Only

condition is that the proposed solution should work
with acknowledged mode for IoT. Underlying
hypothesis is that, "channels" (there are no official
channels in ISM bands) occupancy by surrounding
radio signals (IoT or not) is not equally balanced. In
other words, some ISM sub-bands are less occupied
or jammed than others, but it is not possible to predict
it in time and space, so the need to learn on field.

2.3 A device-side solution for spectrum management

IoTligent learning algorithm is a kind of artificial
intelligence (AI) algorithm that is so simple to
implement that it can be applied at IoT device side
with almost no extra overhead (processing, memory,
energy consumption). It is indeed much more
efficient to implement radio collision mitigation
approaches on device side as devices may be quite far
from gateways, and suffer from different radio and
jamming/co-existence conditions. But they are the
place where watts count at transmission, and where
sensitivity should be the best at reception, as no extra-
processing can be afforded.

3. IoTligent: learning for non coordinated and
decentralized IoT dynamic spectrum access

3.1 Proposed solution

IoTligent is based on reinforcement learning
algorithms such as those already studied [2] and
experimented on real radio signals for Cognitive
Radio and especially Opportunistic Spectrum Access
(OSA) [3]. We assert that, as for OSA, IoT spectrum
access issue can be modeled as a Multi-Armed Bandit
(MAB) problem. Reinforcement learning is based on
a feedback loop that gives a success measure of
experience. In the IoT context we propose to use the
acknowledgement (ACK) sent by the gateway to the
IoT device. First AI experiments on IoT radio signals
have been done in laboratory conditions with USRP
on emulated IoT signals [4], using Upper Confidence
Bound (UCB) algorithms that have been the first
derived to solve the MAB issue [5].

3.2 Advantages of the proposed solution

The main advantages of IoTligent are:
 implementation and execution require very low

processing and memory overhead so that it is
possible to add it in IoT devices at no money cost,
negligible complexity (processing, hardware,
memory) and extra-energy consumption overhead,

 using these learning algorithms never gives worse
results than a state-of-the art random solution [6],

 no coordination is required between devices (see
[6] and [7] for discussion about this issue),

 as soon as a device is planned to receive an
acknowledgment, no overhead is added neither in
terms of protocol nor extra bits to be put into the
LoRaWAN frames in uplink or downlink.

3.3 Analysis of collisions

Radio collisions will be the weak point of LPWAN
IoT networks operating in the license free bands such
as ISM bands. They may occur with other LoRa
devices or any other IoT radio signals using another
IoT radio standard (SigFox, Ingenu, Weightless, etc.).
Each IoT standard uses indeed its own rules for
channeling, bandwidth, user repartition, etc.
Moreover, other radio signals present in the ISM band
which are not IoT signals may also interfere.
Unlicensed band indeed, does not mean un-ruled band
(duty cycle, power limit, etc.), but it is by definition
more exposed to the non-respect of these few rules.

4. Implementation details

The implementation of the learning algorithm we
propose in this paper is decentralized, e.g. it takes
place only on LoRa device side. As stated earlier, no
other aspect of the LoRaWAN network is impacted.
We explain briefly below the LoRaWAN network
side configuration.

4.1 System description

A LoRaWAN network, as any other IoT network, can
be summarized in 4 main elements:
 LoRa devices (our devices run IoTligent),
 LoRa gateway(s) receiving all LoRa radio signals

in their range,
 A Lora Network Server (LNS) that discriminates

devices subscribing to its network from others,
 An Application Server (AS) that receives the data

sent by devices and sends back an
acknowledgment to them (mandatory here).

4.2 Device side

We use a Pycom [8] composed of an Expansion Board
and a LoPy module which can support LoRa wireless

connectivity. Pycom is programmed in Python
language. The frequency channels used in the
experiments are those authorized in the country of
experimentation (e.g. France). Three channels are
usually used in Europe for uplink (UL) with a duty
cycle of 1%: {868.1 MHz, 868.3 MHz, 868.5 MHz}.
IoTligent is completely agnostic to the number of
channels to be used and can be used in any country.

4.3 Network side

We have access to the LNS provided by Acklio
Company. Acklio has several gateways in the town of
Rennes where trials have been made. LNS sends the
received messages to an AS which is a Linux server
in the cloud. AS is running a Python program that
enables to display data and metadata (e.g: frequency,
time of reception, etc.). This programs also contains
instructions in order to send an acknowledgment to
the device, using in downlink (DL) the same
frequency used by the device at UL.

5. Implementation

5.1 Device side

Based on-line examples [8] we use LORAWAN mode
with an Over-The-Air-Activation (OTAA) using
app_EUI and app_key keys:

lora=LoRa(mode=LoRa.LORAWAN,region=LoRa.EU868)

lora.join(activation=LoRa.OTAA, auth=(app_eui,
app_key), timeout=0)

Transmit channel frequency is then chosen in a set of
N channels which is set here at:

N = 3

Indeed, we use standard Europe UL channels with the
following frequency table:

tabFreq =[868100000 , 868300000 , 868500000]

IoTligent device infinite while loop is started, running
the algorithm presented in next section and [2] in
order to choose which frequency to be selected at each
iteration before executing a send operation. ACK is
then expected from the network side in non blocking
mode so that when ACK is not received, devices just
updates its learning data and still goes on.

5.2 Network side – Lora Network Server

Devices should be declared to LNS with the at least
following information:
 devEUI : ID of the device obtained by executing a

« get_id.py » program from [8] on the Pycom
device itself.

 appEUI : which should correspond to app_eui
chosen in the pycom device,

 appKey: which should correspond to app_key
chosen in the pycom device,

 other parameters are let by default at SF=12
(spreading factor), and bandwidth BW=125kHz.

The address of the AS is also specified in Connectors,
as well as the mode used to send data between LNS
and AS (http callback chosen here).

5.3 Network side – Application Server

AS runs a Python program that receives data from the
LNS, as well as LoRa metadata with all parameters of
LoRaWAN transmission (frequency, SF, BW, time of
arrival, etc.). This program also sends an
acknowledgment message to the device in DL. First
acknowledgment attempt is sent by default at the
same frequency than the message transmitted by
device it answers to. Then we block any other
retransmission. This is exactly what is necessary for
the learning of IoTligent:
 use same channel in both UL and DL,
 avoid retransmission in order to save batteries of

devices on the one hand, and radio frequency
overload on the other hand.

6. Learning algorithm in Pycom device

Learning algorithm used in IoTligent are (any) bandit
algorithms, such as those used at first time for
Cognitive Radio dynamic spectrum access in [2] and
proposed in Python library [9]. We take here the
example of UCB algorithm [5]. We have chosen these
algorithms for their ease of implementation. Only
data necessary to be stored for UCB algorithm are:
 an iteration index initialized at 0: it,
 a table of size N (the number of channels, 3 in this

implementation example, but it could be
arbitrarily high) for the number of times each
channel has been chosen: Tk[]

 another table of size N for the empirical mean of
success of each channel: Xk[]

From the learning algorithm point of view, a success
occurs when a device receives an ACK from the IoT
network, which means that currently used frequency
channel did suffer no collision both in UL and DL.
Otherwise, a failure occurred. Update of selected
channel empirical mean Xk is reconstructed easily
from number of activations and previous Xk stored
value.

Then after initialization phase where each channel is
selected alternatively once, UCB algorithm really
starts [2] . It consists for each iteration in choosing the
frequency channel with greatest index Bk, where Bk =
Xk + Ak, where Ak is a bias computed for each channel

like this in a for loop on i index, and with alpha the
UCB parameter that sets the exploration vs.
exploitation trade-off [2]:

Ak[i] = math.sqrt(alpha*math.log(it)/Tk[i])

IoTligent channel selection is then on greatest Bk [2]:

for i in range(0,N):
 Bk[i] = Xk[i] + Ak[i]
 if Bk[i] > max:
 max = Bk[i]
 freq = tabFreq[i]

7. Results

Real experiments have been done on a real LoRa
network currently deployed with 3 channels. More
channels are expected to be used in the future,
inducing no implementation difference (only 2 extra
numbers to be saved by added channel). We now look
at results obtained on IoTligent device, for 129
transmissions done every 2 hours, so an 11 days
period. Figure 1 shows the evolution of Tk index
through time, e.g. the number of time each channel
has been selected by the learning algorithm through
time. In the figures, black curve is for channel 0
(868,1 MHz), blue curve for channel 1 (868.3 MHz)
and red curve for channel 2 (868.5 MHz).

Fig. 1 – Tk index evolution through time

Figure 2 gives the empirical mean Xk experienced by
the device on each of the 3 channels. Each peak
corresponds to a LoRa successful bi-directional
exchange between device and AS: from device
transmission, to ACK reception by the device.

Fig. 2 – Xk Empirical mean evolution through time

We can see that channel 1 gives the best results,
before channel 2, but channel 0 always failed in
sending back an ACK to the device. Each peak in
figure 2 reveals a successful case where ACK has
been received by IoTligent device. Figure 3 gives end
results after 11 days. We can see that channel 0 has
been tried 29 times with Sk[0] = 0 success (e.g. no
ACK received by the device). So learning algorithm
made the device use 61 times channel 1 with Sk[1] =
7 successful bi-directional exchanges, and 39 times
channel 2 with Sk[2] = 2 successes. This corresponds
to 7 (respectively 2) peaks of Xk[1] (respectively
Xk[2]) on figure 2.

Tk[0] = 29 Tk[1] = 61 Tk[2] = 39
Xk[0] = 0.0 Xk[1] = 0,115 Xk[2] = 0,051
Sk[0] = 0 Sk[1] = 7 Sk[2] = 2

Fig. 3 – Results at the end of the experiment

Empirical mean gives the vision the device obtained
from the channels, e.g. a mean probability of 11,5%
of successful bi-directional connection for channel 1
and 5% for channel 2, whereas channel 0 never
worked from the device point of view. With a normal
device, e.g. a non IoTligent device, a random access
is done, trying once over 3 times on each channel, for
a global average successful rate of 5,5%.

It is important to note that here learning algorithm is
mostly in its exploration phase but is learning very
fast. Only during last 2 days of the experiment indeed,
channel 1 has already been used 4 times more than
channel 0 and 2,5 times more than channel 2, which
means that learning is already effective. As proven for
UCB algorithms [2][3], channel 1 will be more and
more selected so that global success will converge to
percentage of success of the best channel which is
11,5% (this estimate can be considered as a good
evaluation as it is based on 61 trials). In other words,
this means that 15 success can be expected in the long
term over the same period of 11 days with IoTligent.
On the contrary normal devices will never improve
and stay in current average, e.g. 7 successful
transmission on the same period duration.

In order to have the same frequency of successful
transmissions, normal devices should consequently
transmit twice more often, which has 2 negatives
impacts. First is that normal IoT devices autonomy
will be twice less than IoTligent devices. Second but
not least is that devices will occupy twice more radio
channels, hence contributing to increase even more
risks of radio collisions and IoT band congestion.

8. Conclusion

We describe in this paper the implementation of
learning algorithms on devices deployed in a real IoT
network. Implementation on LoRa devices in a real
LoRaWAN network is demonstrated and named
IoTligent. As far as we know, it is the first
implementation of decentralized spectrum learning
for IoT wireless networks. Even if current IoT
networks are not densely populated of devices,
medium and even short term forecast predict a high
number of devices to overcrowd ISM unlicensed
bands. IoTligent approach is then a solution to extend
IoT devices battery life, which is a key performance
indicator in IoT eco-system.

9. Acknowledgment

Author would like to thank Laurent Toutain from
IMT Atlantique and Acklio Company, as well as
Yalla Diop for their technical support on LoRa
network and Pycom programming.

10. References

[1] N. Sornin, M. Luis, T. Eirich and A. L. Beylot
“LoRaWAN specification”, tech. rep., LoRa Alliance,
Inc., January 2015.

[2] W. Jouini, D. Ernst, C. Moy and J. Palicot, "Upper
Confidence Bound Based Decision Making Strategies
and Dynamic Spectrum Access," IEEE ICC,
International Conference on Communications, Cape
Town, South Africa, May, 2010

[3] C. Moy, "Reinforcement Learning Real
Experiments for Opportunistic Spectrum Access",
Karlsruhe Workshop on Software Radio, Karlsruhe,
Germany, March 2014.

[4] L. Besson, R. Bonnefoi, C. Moy, "MALIN: Multi-
Armed bandit Learning for Iot Networks with GRC: A
TestBed Implementation and Demonstration that
Learning Helps", ICT’2018, France, June 2018

[5] P. Auer, N. Cesa-Bianchi, and P. Fischer, "Finite-
time analysis of the multiarmed bandit problem",
Machine Learning, vol. 47, no. 2-3, May 2002

[6] R. Bonnefoi, L. Besson, C. Moy, E. Kaufman, J.
Palicot., "Multi-Armed Bandit Learning in IoT
Networks: Learning helps even in non-stationary
settings", CROWNCOM 2017, Lisbon, Sept. 2017.

[7] A. Anandkumar, N. Michael, A. K. Tang, and A.
Swami, “Distributed algorithms for learning and
cognitive medium access with logarithmic regret,”
IEEE J. Sel. Areas Commun., v. 29, no. 4, Apr. 2011.

[8] https://github.com/pycom/pycom-libraries
[9] L. Besson, "SMPyBandits: an Open-Source

Research Framework for Single and Multi-Players
Multi-Arms Bandits (MAB) Algorithms in Python":
https://github.com/SMPyBandits/SMPyBandits

