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Abstract 
 

Traditionally, radar rainfall algorithms are derived through 

nonlinear regression of rain rates and simulated radar 

observables from raindrop size distribution (DSD). The 

performance of such empirical relations is highly 

dependent on the physical model of DSD and the 

parametric relation between the physical model and radar 

parameters. Such algorithms also have large uncertainties 

that need to be adaptively adjusted based on local DSD 

properties. In this research, we propose an alternative 

approach to dual-polarization radar rainfall estimation. In 

particular, a non-parametric machine learning model is 

designed and trained using simulated radar data based on 

DSD measurements in different climatological regimes. 

The trained model is applied to real radar measurements to 

produce rain rate estimates. Preliminary results show the 

promising performance of this novel method compared to 

traditional parametric rainfall relations. 

 

1. Introduction 
 

In principle, rainfall on the ground is dependent on the 

four-dimensional distribution of precipitation aloft. The 

functional relation between rain rate on the ground and the 

four-dimensional radar observations aloft can be obtained 

from measurements (e.g., [1, 2, 9]). However, it is difficult 

to express this functional relation in a simple form due to 

the complex space time variability in precipitation 

microphysics. The performance of radar-derived 

quantitative precipitation estimation greatly relies on the 

physical model of the raindrop size distribution (DSD) and 

the relation between the physical model and radar 

parameters [3-5]. Conventional parametric relationships 

between radar observables and rain rate are not sufficient 

to capture such variabilities, and the empirical relations 

have large uncertainties that need to be adaptively adjusted 

based on local DSD properties [5, 6].  

 

Prior research has shown that neural networks can be used 

to estimate surface rainfall from ground radar 

measurements [7]. This nonparametric approach can 

explore the complex functional relation from high 

dimension input space (i.e., radar data) to the target space 

(i.e., rain gauge measurements). However, the utilization of 

neural networks in rainfall estimation is subject to many 

factors such as the representativeness and sufficiency of the 

training dataset. In addition, most of the previous studies 

focused on single polarization radar (i.e., reflectivity). 

Similar application of dual-polarization radar is yet to be 

explored. In [8], Chen and Chandrasekar have designed a 

machine learning system for dual-polarization radar 

rainfall estimation, and showed the promising performance 

using pseudo radar observations simulated from DSD data. 

This study aims to extend the research in [8] and 

demonstrate the radar rainfall estimation performance 

using deep learning approach in real experiments. 

 

2. Methodology  
 

 

Figure 1. Deep-learning system diagram for dual-

polarization-based radar rainfall applications. 

 

Figure 1 illustrates the architecture of the deep learning-

based rainfall estimation and application system. The key 

component is a machine learning model trained using 

polarimetric radar moments and corresponding rain rates 

computed from DSD data. The model equation can be 

expressed in the following form:  

 ! = "(#$% + &$)                     (1a) 

 ' = "(#* ! + &*)                   (1b) 

 , = "(#- ' + &-)                   (1c) 

. = "(#/ , + &/)                   (1d) 

where % = 0Z, 234, 5367  is the input vector consisting of 

simulated polarimetric observables;  !,  ', and  , are the 



outputs of example three hidden layers; #$, #*, #-, and 

#/  are the weight vectors at the input layer and hidden 

layers, respectively; &$, &*, &-, and &/ are the bias terms 

associated with the input layer and hidden layers, 

respectively; and .  is the output of estimated rain rate, 

which will be compared with rain rates computed directly 

from the DSD data. Note that the model equations in (1) 

are only for illustration purposes. In real applications, the 

number of hidden layers and nodes associated with each 

layer is determined using grid search method.  

 

Figure 2. Locations of disdrometers (red dots) used in model 

training and three radars (red crosses) used for model 

applications.  

 

In this paper, simulated radar moments are used for training 

the deep learning model. The simulated data are derived 

from a large scale of real DSD measurements from 

disdrometers deployed in different climatological regimes. 

Figure 2 illustrates the locations of disdrometers used for 

model training and three radars that will be used for generic 

applications in real experiments. We select these 

disdrometers in different regimes mainly to represent 

different DSD properties as much as possible. 
 

3. Case Studies and Preliminary Results  
 

 
Figure 3. (a) Scattergram of rainfall rates estimated using the 

optimal deep learning model versus rainfall rates computed from 

DSD data; (b) Deep learning-model based hourly rainfall 

estimates  from CSU-CHILL radar at 11 gauge locations versus 

hourly rainfall measurements from rain gauges on 11 June 2015. 

 

In order to demonstrate the performance of the designed 

rainfall model, we use both DSD data for theoretical 

evaluation and radar data for real applications. Figure 3 

illustrates scatter plots of rainfall estimates from both 

theoretical and experimental perspective. In particular, 

Figure 3(a) shows the rain rate estimates from the trained 

model versus rain rates computed directly from the 

independent testing DSD data. Compared to traditional 

parametric rainfall relations, the deep learning model can 

greatly reduce the parameterization errors associated with 

the empirical non-linear regress. Figure 3(b) shows the 

hourly rainfall estimates from CSU-CHILL radar at 11 

gauge locations versus hourly rainfall measurements from 

rain gauges on 11 June 2015, demonstrating promising 

performance of the proposed algorithm. 
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