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Sparse signal detection with spatial diversity using multi-rate sampling
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Abstract

We propose a spectrum sensing system consisting of K spa-
tially distributed cognitive radios linked to a fusion centre.
Each cognitive radio samples a wideband sparse multi-band
signal, where each band comes from a distant device, at a
random rate below Nyquist. Estimations of the signal sup-
port are done locally on undersampled data, then are pro-
cessed at the data fusion center which finally outputs the
support of the original signal. The proposed system is re-
silient and offers substantial gains in terms of detection by
exploiting spatial diversity. The overall sampling rate re-
mains moderate and the local sampling rates are far below
that of Nyquist, relaxing the sampling rate constraints on
ADC s, a traditional limiting factor in wideband sampling.

1 Introduction

Due to an ever-growing demand of radio resources, com-
petition for access to the electromagnetic medium is stiff.
Regulation bodies lack new frequency bands to fulfill users’
requests for more spectrum resources. Yet, studies show
that large portions of the spectrum — both licensed and un-
licensed — are not used everywhere, at all times. This has
led to the 1993 introduction of the Cognitive Radio (CR)
paradigm by Mitola [1]. An aspect of the CR paradigm is
opportunistic communications, where a CR can detect and
exploit locally unused segments of the licensed spectrum,
without causing interference to primary users of licensed
spectrum band. To detect that a carrier is free of trans-
mission at a given time, the CR performs spectrum sens-
ing. This operation usually involves scanning a wide part of
the spectrum, entailing high Nyquist sampling rates. This
is problematic because there is a limit to analog-to-digital
converters (ADCs) sampling rates. It also leads to dealing
with large numbers of samples, which requires more power-
ful — and more power-hungry — computing resources at the
receivers. Fortunately, such wideband signals are usually
sparse in frequency, and can be sampled at rates far below
that of Nyquist [2]. As such, our aim is to reliably detect the
location of a sparse signal with as few samples as possible,
using sub-Nyquist sampling techniques.

Previous works on sub-Nyquist sampling (sampling below
the Nyquist rate) include Multi-Coset Sampling [3], a non-
periodic sampling scheme, and the Modulated Wideband

Converter (MWC) [4], where the signal is multiplied by
periodic mixing functions before filtering and sampling.
In both methods, the signal support is recovered by solv-
ing an optimisation problem. One limitation of these sys-
tems is that they rely on dedicated and rather complex hard-
ware. They also include solving numerical systems subject
to unstabilities. Other previous works explore the idea of
a Multi-Rate Sampler (MRS) [5], which samples the input
signal at different sub-Nyquist rates in different branches.
The spectral components of the signal are then folded at
different frequencies, except for the aliases located at the
actual signal’s bands, all located at the same frequencies.
We extend this system to a distributed system where the
different branches are different CRs, located at different
places, linked to a fusion centre which agregates and pro-
cesses sampled data (see Figure 1). The proposed system
provides two main improvements, which are the beneficial
use of spatial diversity and the simplification of the hard-
ware present in multi-channel/multi-sampler devices.
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Figure 1. Distributed sub-Nyquist sampling system ex-
hibiting spatial diversity. Bands are shown unaliased at re-
ception for clarity. T is a transmitting device and FC is the
fusion centre.

The remainder of the paper is organised as follows. Section
2 describes the proposed system model. Section 3 presents
some results pertaining to our system. Section 4 explores
the future refinements and improvements of the proposed
system. Section 5 concludes the paper.

2 Proposed system model

Our proposed system is composed of M devices which
transmit in the frequency range [f}, f,,] and K cognitive ra-
dios (CR) located at diverse locations linked in a star topol-



ogy to a fusion centre with which the CRs exchange infor-
mation. Our goal is to recover the support along the fre-
quency axis of a continuous-time band-limited multi-band
signal of bandwidth BW = f,, — f;. A multi-band signal is
a signal whose support is a finite union of intervals. The
occupancy rate of a multi-band signal s(7) is A = %
where p(I) is the Lebesgue measure of I (for a union of
distinct intervals, the Lebesgue measure is the sum of the
lengths of the intervals) and supp(s) is the support of signal
s(t). Our inputs for the system are K, f; and f;,.

Let s;(t) be the continuous-time band-limited transmitted
signal by the j-th device. The received signal at each CR is,
when converted to baseband:

M—-1

yi(t) =Y (sj%hji)(t) +nir) (1)

Jj=0

where £;(¢) is the channel response between the j-th device
and the i-th CR, and n;(¢) is an additive white Gaussian
noise (AWGN) of variance Giz.

Upon reception at each CR, the signal is converted to base-
band and goes through an analogue low-pass filter at fre-
quency BW. Then, each CR samples the signal at a dif-
ferent rate fs;,1 <i < K. fs; is below the Nyquist rate
fvyg=2-(fu—fi). Let pi = % > 1 be the reduction ratio
between the Nyquist rate and the i-th CR’s sampling rate.
This process is known as undersampling. Next, samples
are put together in batches. Batches have the same constant
duration across all CRs, the duration 6 of a batch being
defined as 6 = %, where N; is the number of samples in
any given batch of samples at the i-th CR. The samples in a
batch form a sample vector y;.

Next, each CR performs an FFT on the last sample vector
y; to give §;. As the sampling rate is below Nyquist, the
FFT bins cover a p;-times smaller span than the bandwidth
BW of the original signal. Noise and all signal components
are folded onto [— fs;/2, fsi/2]. The occupancy rate of the
signal sampled at the i-th CR, A; is comprised between A4
(maximum folding of bands of interest) and A - p; (no fold-
ing of bands of interest onto other bands of interest).

Classic spectrum sensing is then performed on each J;. In
this paper we consider energy detection for its simplicity.
However determination on 7 is not detailed. For each fre-
quency bin, the squared value |§;(f)|* is compared to a
threshold 7. If [§;(f)|? > 7, signal is said to be present and
the output is 1. Else, no signal is detected and the output is
0.

Performing energy detection on each FFT bin results in a
vector l; composed of N; binary values called the likeli-
hoods (of presence) vector. They are now sent to the fusion
centre (FC) for further processing and determination of the
original frequency support.

The FC replicates the different likelihood vectors I; over
the whole bandwidth BW. The expanded likelihood vec-
tors now have the same length N = |[BW - § | and are con-
catenated into a K X N matrix L called the likelihood ma-
trix. Each expanded likelihood vector is a row of L. The
nonzero expanded likelihood vector values are the candi-
dates for original signal support. The support is found by
exploiting the fact that the candidates are located at differ-
ent parts of the folded spectrum (due to having been sam-
pled at different rates) except for the ones that are at the
same location as in the original signal support [5]. For each
column of L, the FC applies a voting rule which determines
the support of the original signal. Some well-known voting
rules are AND and OR (a logical AND/OR is applied to all
values in a given column of L to give the output for the FFT
bin corresponding to the column) [6].

3 Simulation results

For each device-to-CR link, we model an emission on the
channel as a Bernoulli trial of parameter p,. This means
that any given transmitted band is received at any given
receiver with probability p,. This simple assumption can
represent a wide variety of cases. For instance, a channel
with favorable line-of-sight propagation where transmis-
sion powers are high corresponds to a high probability of
reception p,. A moderately favorable channel (some shad-
owing, noise, or a long distance between device and CR)
will be represented with a intermediary p,. In a difficult
environment, p, will be low. We suppose the delay from
transmitter to receiver to be 0. The received signal (1) be-
comes:

M—1
vilt) =} bij-s;(t) 2)
j=0
where
b — 1 with probability p, )
Y7 0 with probability 1 — p,.

We set K = 10 CRs and M = 4 transmitting devices. We
focus on the 2.4 GHz ISM band (whose bandwidth BW is
83.5 MHz). We suppose that each device transmits on a
randomly chosen 500 kHz band at all times. The occupancy
rate is thus A = % ~2.4%.

The sampling rates fs; are drawn from a uniform distribu-

tion U (22, /%) " which means that the reduction rate p;
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ranges from 8 to 12. The mean sampling rate is 5 llv(‘)" and on

average, the overall sampling rate (defined as the geometric
sum of all CRs’ sampling rates divided by the number of
CRs) is fyyg. This is the Nyquist regime. This is about 40
times the Landau rate, i. e. the lower-bound for sampling
without loss of information. The batch duration § is set to
1 ms. For a given batch, the samples of each CR form the




sample vector y; of length N; = 8 - fs; on which the FFT is
applied.

The form of the received signal (2) renders the energy de-
tection step trivial as the threshold ¥ can be set to an arbi-
trarily low non-zero value. Conceptually, difficulties per-
taining to energy detection techniques arise when the SNR
of the received signal is low. We choose to model the SNR
within the aforementioned probability of reception p;,.

Once energy detection is performed on each J;, the different
likelihood vectors I; are sent to the fusion center, expanded,
padded if necessary, and concatenated in the L matrix. The
voting rules used are of type "at least K — k" [6]:

K-1
Aln] = 1 1fi§0L,»,,2K—K

0 otherwise

0<n<N-1 (4

where A is the array of the combined likelihoods of pres-
ence. The support of the original signal s is then the support
of A.

To evaluate our system, the nonzero values of A are com-
pared to the frequency support of s. The proportion of de-
tected bands, or the detection rate, Pp = % and
proportion of false alarms, or the false alarm rate, Pry =
% are computed. The varying parameters are p,,
k and p;. Each experiment has been averaged over 1000

cycles.
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Figure 2. Proportion of detected bands Pp and of false
alarms Pr4 versus probability of reception of a given band
at a given CR p, under several voting rules in the Nyquist
regime (p = 10, K = 10).

Figure 2 displays the detection rate Pp and the false alarm
rate Pry as a function of the probability of reception of each
band at each CR p, varying from 0.1 to 1 for different vot-
ing rules. The first observation is that in the case of an ideal
reception of each band at each CR (p, = 1), the system cor-
rectly detects the support (Pp ~ 1.0) with, for some voting
rules, a rate of false alarms as low as 0. Note that this case
corresponds to an absence of spatial diversity, since all CRs
receive the same bands.

When p, is below 1, the different CRs receive different
bands and spatial diversity comes into play. For a non-
spatially diverse system, we necessarily have Pp < p,. The
proposed system goes beyond this limit. Consider p, =
0.8 for voting rule "at least 70%" in Figure 2: 92.2% of
bands are correctly detected (a 15% gain over the best non-
spatially diverse systems), while the probability of false
alarm is kept at the reasonable level of 3.5%. Spatial di-
versity is exploited and provides gains in adverse environ-
ments, compared to non-spatially diverse systems. For a
proportion of false alarms of about 5%, the order of magni-
tude of the gains is 10%.

The system can also work in the "true" sub-Nyquist regime
(overall average sampling rate of the system below fiy,),
but the device-to-CR link has to be excellent. Under good
propagation conditions, reducing the sampling rate has little
consequences on the proportion of detected bands Pp, but
the proportion of false alarms Pr4 dramatically increases.
Indeed, reducing the sampling rate causes the narrower sub-
sampled bandwidths to be replicated more, thus proposing
more candidates for the support, which in turn increases the
false alarm rate. However, if one is not overly concerned
about the false alarm rate, reducing the sampling rate far
below Nyquist is plausible — up to the point where the
sub-Nyquist spectra §; are completely full of aliases. Fig-
ure 3 suggests that for Pp = 0.95 (under p, = 0.95), the lo-

cal sampling rates can be reduced to % (overall sampling

rate of % Jayg = 0.625 fivyg, a gain of 37% over an overall
sampling rate equal to fyy,) while keeping the false alarm
rate Pry below 10%. Note that to keep Pr4 low, the voting
rule has to be fairly strict. Since candidates are numerous,
there needs to be a large consensus across all CRs. This ex-
plains why the link quality needs to be excellent: if all CRs
do not receive the same bands, a wide consensus is hard,
not to say impossible, to reach.

1.0 1
0.8 A
Py P8 4‘/.
Voting rule h T T
5 0.6 1 —— detection rate
RS PP false alarm rate
< 0.4 4 —®— AND (100%)

at least K-1 (90%)

0.2 1

P i P I P RS 3

Figure 3. Proportion of detected bands Pp and of false
alarms Pg4 versus average sampling rate reduction p, with
an excellent link (p, = 0.95).

Conversely, if we allow for an overall sampling rate above
that of Nyquist (while remaining below Nyquist at each
CR), the resilience of the system is significantly improved.
Consider Figure 4: for an overall sampling rate of 2.5 fy4,



the detection rate under voting rule "at least K — 7" is 85%
for p, = 0.3 (false alarm rate: 5.7%) which represents a
gain of 114% over non-spatially diverse systems. Indeed,
high sampling rates means little spectrum folding. The can-
didates have a higher chance of being the actual signal fre-
quencies. The requirements on the consensus needed to
keep Prs low are more lax, meaning that fewer CRs have
to receive the bands for a consensus to be reached, which in
turn allows for a lower p,.
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Figure 4. Proportion of detected bands Pp and of false
alarms Pg4 versus probability of reception p, in the above-
Nyquist regime (p =4, K = 10).

4 Future improvements

Future improvements will be along three areas: modeling,
signal detection, and fusion.

The channel model is extremely basic and refining the
model would be beneficial in understanding the potential
of the proposed system.

Energy detection-based systems are simple but their per-
formance is strongly degraded in low SNRs.  Sub-
Nyquist sampling systems suffers from noise folding [7]
and thus are particularly vulnerable to this phenomenon.
Cyclostationarity-based approaches provide better results
in low SNRs at the expense of an increased complexity.
A question of utmost interest is whether cyclostationarity-
based spectrum sensing could be used in distributed multi-
rate sampling systems to detect signal presence in the
folded spectrum.

A current limitation of the proposed system is the choice of
the voting rule. There is no "one-fits-all": the voting rule
needs to be carefully chosen for each case. A strict voting
rule will result in a low detection rate; a lax voting rule will
result in a high false alarm rate. Further works will focus on
precisely identifiying of the criteria that impact the choice
of the best voting rule for a given situation. Other fusion
methods will be considered, among which Al-based ones.

5 Conclusion

‘We proposed a new spectrum sensing system based on spa-
tially distributed cognitive radios sampling at random uni-
form sub-Nyquist rates, thus exploiting aliasing and spa-
tial diversity. Interesting trade-offs are put forward and ex-
plored. The hardware complexity of the samplers is re-
duced compared to pre-existing solutions. In particular,
constraints on the ADC sampling rates are relaxed. The
proposed system works in sub-Nyquist, Nyquist and above-
Nyquist regimes. In the sub-Nyquist regime, the system
provides a significant reduction of the overall sampling rate
(up to 40% from the Nyquist rate for a sparse signal), but
the link quality has to be excellent. In the Nyquist regime,
spatial diversity is made use of to provide detection gains
of about 10%. In the above-Nyquist regime, detection gains
are far higher, making the system more resilient in case of
poor link qualities. Further refinements are needed to get a
deeper and fuller understanding.
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