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Maximizing absorption for dielectric scatterers
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Abstract

The absorption characteristics of a dielectric, isotropic
sphere in the plasmonic regime are analyzed. Relations
are derived for the position of the maximum absorption ef-
ficiency for the first electric dipole resonance mode. The
dissipation results are connected with the natural frequen-
cies of the sphere as well as to the circuit-inspired matching
analogy for optimum absorption.

1 Introduction

The scattering by an object is a central problem in electro-
magnetics. How are electric and magnetic fields perturbed
when a plane wave hits an irregularity? Such inhomogene-
ity can be in the form of a sharp boundary with a sudden
change in the constitutive parameters, or a gradual densing
of the background environment.

The radiating power of the incident field—the Poynting
vector of the wave—gets decreased due to the scattering by
the object, and also owing to the absorption by the dielec-
tric losses that the incident wave incites in the scattering
volume. In this presentation, we will focus on the absorp-
tion aspects of scatterers, and in particular the way how the
optimal (maximum) losses of a fixed-parameter object can
be acquired for a given setting of the wave–scatterer con-
stellation.

We can benchmark the scattering, absorption, and extinc-
tion properties of a scatterer through the analysis of the
electromagnetic interaction of a spherical (lossy) sphere
with an incident plane wave. The quantifying factors are
the efficiencies (relative cross sections) of the particle as it
interacts with the incoming electromagnetic wave.

2 Mie scattering, absorption, extinction

The scattering problem (Figure 1) shows a propagating
plane wave encountering an object (here isotropic, homo-
geneous, dielectric sphere). The incident fields become
scattered, absorbed, and diffracted. For a sphere, the scat-
tering perturbation can be calculated analytically using the
Lorenz–Mie analysis [1, 2]. A dissipative object also ab-
sorbs energy, in addition to scattering. The sum of these

two effects is the extinction. These effects are measured
by the scattering, absorption, and extinction cross sections,
and in the normalized form as the efficiencies [3].

Figure 1. An incident electromagnetic wave hits a dielec-
tric sphere. Electromagnetic energy is scattered and ab-
sorbed.

The efficiencies depend on the relative permittivity ε and
the size of the scatterer. The absolute size is normalized in
the following way:

x = ka (1)

where k is the free-space wave number and a the radius of
the sphere.

The (dimensionless) scattering efficiency is the total scat-
tering cross section normalized by the geometrical cross
section of the sphere, and the three efficiencies can be cal-
culated from the series
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2
x2

∞

∑
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(2n+1)Re{an +bn} (3)

Qabs = Qext−Qsca (4)

where the Mie coefficients an (electric multipoles) and bn
(magnetic multipoles) contain spherical Bessel and Hankel
functions and their derivatives [3]. For a lossless sphere (ε
is real), absorption efficiency Qabs vanishes.

Figure 2 shows the strong variation of the extinction (scat-
tering) efficiency of a lossless sphere as function of its
relative permittivity and size parameter. Note the strong
plasmonic resonances (due to electric multipoles) between



−5 < ε < 0, and the curving ranges of the dielectric reso-
nances (due to electric and magnetic multipoles) for large
positive values of ε .

Figure 2. An attempt to visualize the behavior of the ex-
tinction efficiency of a lossless dielectric sphere as function
of its size parameter x and relative permittivity ε . For the
plasmonic region (ε < 0), the electric multipole magnitudes
grow without limit as the size x decreases. The dielectric
resonances curve to large positive permittivity values as the
size decreases. Note that the amplitude roof in the picture
is Qext = 10 and higher-order resonances are too sharp to be
resolved.

3 Electric dipole resonance and maximum
absorption

Focusing on the plasmonic resonances, and in particular,
the resonance due to the electric dipole (Mie coefficient a1),
it is known from electrostatic reasoning that the "Mossotti
catastrophe" for subwavelength spheres takes place at ε =
−2. However, as the size of the sphere increases, Padé
approximants of a1 [4] show that the resonance (red)shifts
with the following dependence on the size parameter x:

εres =−2− 12
5

x2 (5)

Let us next raise the question: assuming a dissipative ma-
terial (complex permittivity ε = ε ′− jε ′′), what is the max-
imum absorption for a sphere with a given size parameter?

To answer this, numerical exploration is needed. Assum-
ing small to moderate losses, the position of the absorption
peak is very accurately the same as for scattering (given by
Equation (5)). Numerically it seems that the maximum of
Qabs for the electric dipole resonance is approximately

Qabs,max ≈ 12x/ε
′′ (6)

which holds quite well for size parameter values below x≈
0.1 and large enough loss values. However, if ε ′′ is very

small, the behavior reverses itself, and the relation becomes
linear with ε ′′ but to the inverse fifth power of x:

Qabs,max ≈ 3ε
′′x−5 (7)

In fact, the result (6) is rather counter-intuitive: with de-
creasing loss factor the maximum absorption increases!
Anyway, Figure 3 shows how well these approximations
work when the imaginary part of the permittivity changes
from 10−6 to 1, for a sphere with size parameter x = 0.1.
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Figure 3. The maximum of absorption efficiency (the
dipole peak at around−2.024) for a dielectric sphere of size
parameter x = 0.1 with varying intrinsic losses (solid blue
line). Note how the behavior changes from that of Equa-
tion (7) (dashed orange) to (6) (short-dashed green) when
the loss factor increases.

The achievable maximum for the absorption efficiency can
also be looked from the point of view of varying the size.
Figure 4 shows Qabs,max as function of size parameter and
with fixed loss factor. Combining both views, Figure 5
shows the maximum as function of both parameters.
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Figure 4. The same as in Figure 3, for fixed loss (ε ′′ =
10−5), as function of the size parameter.

What, then, is the maximum of the maxima? As can be
seen, depending on which parameter is kept constant, the
maximum takes place at a different position. Furthermore,
the magnitude of Qabs,max is also different:



Figure 5. The maximum absorption efficiency (computed
at permittivity −2− 2.4x2− jε ′′ which corresponds to the
maximum) as function of size parameter x and loss ε ′′.

For fixed size parameter x:

Qabs,max = 1.5x−2 at ε
′′ = 2x3 (8)

and for fixed imaginary part of the permittivity ε ′′:

Qabs,max = 18 · (10ε
′′)−2/3 at x = (ε ′′/10)1/3 (9)

4 Discussion

These results concerning the maximum absorption effi-
ciency can be connected with the concept of radiative reac-
tion. This is a damping mechanism accounting for scatter-
ing loss that can be seen to arise from the Padé expansion of
the Mie coefficients [4], and also from the circuit-inspired
analysis of the scattering process [5]. Indeed, as shown in
[4], the maximum absorption for the first plasmonic reso-
nance follows the relation

ε
′′ ≈ 2x3 (10)

as in Equation (8) above. The justification for the result
(10) followed a matching principle between the radiative
damping and material dissipation.

Another point of view for looking at the matching principle
is to search for a pole for the a1 coefficient, in other words
the natural frequencies. Figure 6 shows the absolute value
of the a1 Mie coefficient for x = 0.1 in the region where
ε ′′ is negative (active medium). The pole takes place for
ε ≈ −2.024− j0.002 which matches the earlier conditions
(5), (8), and (10). An interesting observation is the resonant
behavior of the three efficiencies around this pole position,
displayed in Figure 7.
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Figure 6. Contour plot of absolute value of the electric
dipole coefficient |a1| around the first pole (note that ε ′′ < 0
corresponds to active medium). Size parameter x = 0.1.
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Figure 7. The extinction (solid blue), scattering (dashed
orange), and absorption (short-dashed green) efficiencies
of a plasmonic sphere for ε ′ = −2.024 as function of the
imaginary part of the permittivity ε ′′ (ε ′′ < 0 corresponds
to active medium). The size parameter is x = 0.1. Note the
negative absorption efficiency (negative dissipation), but a
positive scattering efficiency which together shape a "dou-
ble resonance" for the extinction efficiency.
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