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Abstract

Implantable medical devices that make use of wireless com-
munications have so far attracted great attention. For ef-
ficient treatment based on wireless implantable devices, it
is important to acquire their locations with high accuracy.
In addition, considering an application example of wireless
capsule endoscopy, motion control from outside and wire-
less power transmission need the endoscope location esti-
mation in real time. This paper developed a real-time max-
imum a posteriori (MAP) location tracking system that can
simultaneously estimate not only the location but also chan-
nel parameters for implantable medical devices. We then
investigated achievable localization accuracy based on ex-
perimental evaluation under liquid phantom environment.

1 Introduction

Recently, implantable medical devices to realize efficient
medical treatment have attracted much attention [1]. One
of the promising medical devices is a wireless capsule en-
doscope, which includes a small camera and wireless com-
munication function in order to make it easier to diagnose
gastrointestinal conditions. In such medical treatments with
implantable devices, it is important to estimate their loca-
tions accurately.

So far, several kinds of localization methods have been pro-
posed, such as magnetic field-based, radio frequency (RF)
wave-based, and acoustic-based technologies [2-5]. This
paper pays attention to received signal strength indicator
(RSSI)-based localization because RSSI can be measured
by a fundamental function in modern wireless communica-
tion systems without any additional special devices [5, 6].

To realize precise accuracy in RSSI-based implantable de-
vice localization, a maximum likelihood (ML) and max-
imum a posteriori (MAP) estimations were introduced in
the related works. However, the performance evaluation
was mainly considered through computer simulations and
theoretical analyses. Furthermore, the theoretical analyses
were limited to only the ML estimation [6], so that, the the-
oretical studies for the MAP estimation and the experimen-
tal evaluation were rarely discussed. In addition, there is
another problem in the RSSI methods; the ML and MAP
estimations need the channel parameter information in ad-
vance, which can represent the RSSI variation in the loca-
tion estimation area [5].

In this paper, we aim to extend a MAP method to estimate
not only the implantable device location but also the chan-
nel parameters. Then, we develop an implantable device
location estimation system with the proposed MAP estima-
tion. Finally, this paper carries out experimental perfor-
mance evaluation under liquid phantom environment and
demonstrates the performance improvement of the location
estimation accuracy.

2 System Model and Implant Propagation
Characteristics

2.1 System overview

In the location estimation system shown in Fig. 1, there are
a medical implantable device inside a human body whose
location is unknown so should be estimated and N receivers
on the body surface whose locations are known in advance.
Here, the receivers, namely RSSI detectors, measure RSSI
data from 400 MHz-band implant communication signals
transmitted by the implantable device, and afterwords, the
measured RSSI data are sent to a laptop personal computer
(PC) through 920 MHz-band wireless communications. As
shown in Fig. 2, we estimate the three-dimensional im-
plantable device location u = [x,y,z]” based on N receiver
positions a, = [x,, yn,zn]T, where the index n ranges be-
tween 1 and N. The implantable device transmits a packet
to the receivers, and each receiver measures an RSSI P,
from the received packets.

2.2 Model of implant communication link

To accurately estimate the implantable device location with
RSS]I, a statistical model on the RSST is required, which can
well characterize the RSSI variation in the implant commu-
nication. From the investigation based on the finite differ-
ence time domain analysis, we came to the conclusion that
the RSSI of the 400 MHz MICS-band signals can be well
modeled with the following two-layered model [5]:

- _ 1 {logP, —logP, }?
P=ar,P P = —
n T P( Vl|r") \/ﬁGPn exp 202
e))
where P, and r, indicate the average received power and
the distance between the implantable device and the n-th
receiver, respectively, and p(P|r) is the conditional prob-

ability density function (p.d.f.) on P, when r, is given.
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Figure 1. Overview of implantable device localization
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Figure 2. Location estimation system model

From (1), the channel parameters vector should be defined
as ¢ = [a, B,0]" that is uniquely determined by individual
human body characteristics.

3 Proposed Joint MAP Location/Channel
Parameter Estimation Method

3.1 Conventional ML estimation

To estimate both the location and the channel parameters,
we derive a log-likelihood function on not only the location
u but also the channel parameter c for joint location/channel
parameters estimation as

L(ll,C: [a7ﬁ76]T) zlogl(u,c) :logp(PlaPZa"' ,PN|U,C).
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Assuming that P, is statistically independent with P, (n #
n') (local whiteness), we finally obtain
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The conventional ML location estimation gives @ and ¢

which maximize (3), where (-) denotes the estimate of ().
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3.2 Proposed MAP estimation

Then, let us introduce a MAP estimation technique to the
implantable device localization problem. The MAP esti-
mation requires the logarithm of a conditional probability

density function on u when P and ¢ are given, namely, a
posteriori probability density function on the implantable
device location, which is given by

log p(u|P,¢) =< log p(P|u,c) +log p(u) = L(u,c) +log p(u)
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where the first term log p(P|u,c) can be calculated by the
log-likelihood function defined in (3). Therefore, for real-
izing the MAP estimation, it is a key issue to obtain the
second term log p(u), i.e., the prior probability on the loca-
tion. In this paper, we employ a particle filter-based ap-
proach to acquire the prior probability. The particle fil-
ter with a sequential importance sampling (SIS) algorithm
needs the definition of the state transition model and obser-
vation model [7]. Regarding the transmission model, we as-
sume the random way point model that represents the cap-
sule endoscope movement inside a small intestine [S]. On
the other hand, the observation model is necessary for the
update of each particle weight in the SIS algorithm. Defin-
ing i, m and w;,, as the particle index, the time index and
the normalized particles weights, respectively, the particle
weight w; ,, is updated as

Wim = Wi,mflp(Pm |ui,in7 C) = Wi,mfll(ui,ma C). (@)

Here, P,, is the m-th measured RSSI vector defined as
Py = [Pn1,Pn2, - ,Bun]T, where Py, denotes the RSSI
measured at the n-th receiver with the time index m. Using
the prior probability p(u,,) acquired by the particle filter
algorithm, the proposed MAP method estimates the loca-
tion and channel parameters that maximize (4), which thus
result in

6,8] = argmax L(u, ) + log p(u)] . ©)

3.3 Cramer-Rao lower bound analysis

In order to theoretically analyze the estimation accuracy, we
derive the CRLB for the proposed MAP methods that pro-
vides the theoretical minimum error variance. The CRLB
can be derived by the diagonal elements of the inverse of the
information matrix defined as J; = Jr + Jp [8], where Jr
and Jp denote the Fisher information matrix and the priori
information matrix, respectively:

Jr = —E{ [;uL(u,c)} [;uL(u,c)} T} )
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Let I and I; denote the inverse matrix of Jr and its i-th
diagonal element, respectively. In this case, the minimum
location error variance for the proposed MAP estimation
GCZ‘RLB is written as

Orep = min(varlx] +varly| +varlz) = It + b + 3. (9)
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4 Experimental Evaluation

4.1 Experimental setup

For evaluation of the performance for the prototype local-
ization system with the MAP estimation, we conducted an
experiment with liquid phantom in an anechoic chamber.
Figs. 3 and 4 show the photograph of the experimental en-
vironment and the RSSI detector employed in the experi-
ment, respectively. In Fig. 4, the RSSI detector has both
400 MHz-band antenna for implant communications and
920 MHz-band antenna for collecting measured RSSI data.
The implant transmit antenna was moved inside the liquid
phantom along the movement path shown in Fig. 5. The es-
timation area was assumed to a cuboid area, whose size was
25 cm (width) x 13 cm (depth) x 11 cm (height). We put 8
RSSI detectors on the tank of the liquid phantom to measure
RSSIs from the 400 MHz-band implant communication sig-
nals. As for the transmit antenna, we used helical antennas
whose resonant frequency was 400 MHz band. The relative
permittivity and conductivity of the liquid phantom were
34.35 and 0.53 S/m, respectively, which were similar to the
average dielectric constants of a human body.

First, let us show the measured RSSI data against the dis-
tance between transmitting and receiving antennas in Fig. 6.
Also, Fig. 7 shows the p.d.f. on the measured RSSIs nor-
malized by the average RSSI. As can be seen from both fig-
ures, the two-layered model used in the proposed method
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Figure 5. Movement path of transmit antenna
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Figure 6. Measured RSSI on distance

can well represent the RSSI variation in the experimental
environment. Note that the channel parameters were ob-
tained as ¢ = [107°83, —3.15,1,00]".

4.2 Estimation accuracy

Fig. 8 shows the root mean square (RMS) location estima-
tion errors for the proposed method. For comparison pur-
pose, this figure also includes the localization performances
for the conventional method which needs the channel pa-
rameters information in advance. These results demon-
strates that the proposed MAP estimation has accomplished
almost the same accuracy for the conventional method with
known channel parameters in the computer simulations. We
can also find that, in the experimental results, the proposed
MAP estimation is superior to the ML estimation. Conse-
quently, the proposed method can successfully estimate not
only the location but also the channel parameters with good
accuracy. Furthermore, the results for the computer simula-
tion quickly converges to the theoretical lower bound. Im-
portantly, the achievable estimation performance has been
achieved to 5 mm.

Finally, let us discuss the accuracy of the parameters esti-
mation in the experiment. Fig. 9 shows the experimental
results of the normalized RMS errors for the parameters es-
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periment
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Figure 8. RMS location estimation performances for the
proposed MAP localization method

timation. In the experimental results, the proposed MAP
estimation can estimate all the channel parameters with the
normalized RMS error of 0.5 below. As can be seen from
both results in Figs. 8 and 9, we can conclude that the pro-
posed MAP estimation has accomplished the location es-
timation accuracy of 20 mm with any prior knowledge of
the channel condition, and furthermore, it is noted that the
developed system should have a possibility to improve the
accuracy to below 5 mm based on the CRLB analysis.

5 Conclusions

This paper has developed a real-time localization system
for implantable devices with a MAP location/channel pa-
rameter estimation. Our evaluation results that the pro-
posed method can accomplish good accuracy in the loca-
tion and channel parameter estimation in the experiment,
which should be satisfied for implantable medical applica-
tions, such as wireless capsule endoscopy systems.
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