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Abstract

In this paper, scattering of quasi-electrostatic waves, propa-
gating in the resonance cone direction, by an infinitely long
conducting right circular cylinder in a hyperbolic medium
is considered. This problem is analyzed within the quasi-
electrostatic approximation, i.e., both incident and scattered
waves are represented with the electrostatic potential. The
expressions for the electric field components of the scat-
tered field, the surface charge density, the radar cross sec-
tion per unit length, and the directivity pattern are obtained
and analyzed. The results may be important for electrody-
namics of magnetoplasmas and metamaterials.

1 Introduction

A classical problem of scattering of electromagnetic waves
by a cylinder in isotropic media was solved long ago [1–3].
For about 60 years, this problem has attracted attention of
researchers in case of dielectrically anisotropic media due
to studies of waves in magnetoplasmas [4] and, more re-
cently, in metamaterials [5]. A very good explanation of
the theory of radiation and scattering in anisotropic media
is found in [6], and many papers deal with some problems
concerning this issue [7–12].

In this paper, we analyze scattering in a homogeneous hy-
perbolic medium with the dielectric tensor

ε̂ = ε0

 ε⊥ iε× 0
−iε× ε⊥ 0

0 0 ε‖

 (1)

where the third coordinate corresponds to the anisotropy
axis, ε0 is the vacuum permittivity, values ε⊥, ε‖, and ε×
are real, and ε⊥ε‖ < 0. Permeability is supposed to be
isotropic and equal to the vacuum permeability µ0. The
iso-frequency surfaces ω(~k) = const corresponding to (1)
are shown in Fig. 1 where k⊥ and k‖ are the transverse and
longitudinal (with respect to the anisotropy axis) compo-
nents of the wave vector~k. These surfaces are determined
by the dispersion relation(

ω

c

)2
=

k2
⊥

ε‖
+

k2
‖

ε⊥
(2)

where c is the speed of light in a vacuum and ω/(2π) is the
radiation frequency. The so-called resonance cone direction

exists here at angle θres = arctan
(
|ε‖/ε⊥|1/2

)
. Near this

direction, the wave numbers k can be arbitrarily large, i.e.,
k� kem (see Fig. 1), and the waves propagating close to the
resonance cone are quasi-electrostatic. Their electric field
ℜ[~E(~r)exp(−iωt)] can be described with an electrostatic
potential at each moment of time, i.e., ~E(~r)=−∇Φ(~r), and,
in the absence of sources,

div(ε̂∇Φ) = 0. (3)

The magnetic field ~H = curl~A of quasi-electrostatic waves
can be described using the Coulomb gauge (div~A = 0).
Thus ∇2~A = iωε̂~E, and this equation can be solved us-
ing the theory of Newtonian potential if solution of (3)
is known. However, due to the quasi-electrostatic nature
of the problem, the magnetic field here is relatively weak
(cµ0|~H| � |~E|), and thus we only analyze the electric field
in this paper.

The hyperbolic metamaterials attract much attention due to
their unique optical properties allowing negative refraction,
hyperlensing, and cloaking phenomena (see [13–16] and
the references in [17]). As to the near-Earth plasma, re-
cent satellite data show [18] that chorus emissions in the
radiation belts can propagate in a quasi-electrostatic mode,
i.e., close to the resonance cone. Thus study of the elec-
tromagnetic properties of hyperbolic media is interdisci-
plinary. In the present paper, we analyze scattering of quasi-
electrostatic waves by an infinitely long conducting right
circular cylinder in a homogeneous hyperbolic medium.

2 Equation for Potential: the General Solu-
tion

Let us introduce the cylindrical coordinates (ρ,ϕ,z) where
z-axis is directed along the anisotropy axis. Equation (3),
written down for potential Φs of the scattered field ~Es =
−∇Φs in a homogeneous medium, then becomes

∂ 2Φs

∂ρ2 +
1
ρ

∂Φs

∂ρ
+

1
ρ2

∂ 2Φs

∂ϕ2 − γ
2 ∂ 2Φs

∂ z2 = 0 (4)

where γ = |ε‖/ε⊥|1/2 = tanθres > 0. This equation is hyper-
bolic, and the off-diagonal components ±iε× of tensor (1)
do not enter equation (4) because a medium is homoge-
neous and ε̂ is a Hermitian tensor.
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Figure 1. Iso-frequency surfaces ω(~k) = const for ε⊥ > 0,
ε‖ < 0 (left) and ε⊥ < 0, ε‖ > 0 (right). The dashed lines
denote the resonance cone.

Firstly, we apply the 1D Fourier transform to the unknown
function Φs:

Φ
s(ρ,ϕ,z) =

1
2π

+∞∫
−∞

Φ̄
s(ρ,ϕ,kz)exp(ikzz)dkz. (5)

Thus equation (4) becomes

∂ 2Φ̄s

∂ρ2 +
1
ρ

∂ Φ̄s

∂ρ
+

1
ρ2

∂ 2Φ̄s

∂ϕ2 + γ
2k2

z Φ̄
s = 0. (6)

Separation of variables in this equation gives

Φ̄
s(ρ,ϕ,kz) =

+∞

∑
m=−∞

hm(kz)Hm
(
γ|kz|ρ

)
exp(imϕ) (7)

where hm(kz) is an arbitrary coefficient (m= 0,±1,±2, . . .),

Hm(u) =

{
H(1)

m (u), if ε⊥ < 0 and ε‖ > 0;

H(2)
m (u), if ε⊥ > 0 and ε‖ < 0,

and H(1)
m (u) and H(2)

m (u) are the Hankel functions of the first
and second kind of order m, respectively.

The reason why different Hankel functions (depending on
sgnε⊥ and sgnε‖) enter (7) is that this solution should cor-
respond to the outgoing (from ρ = 0 to ρ → +∞) waves
of energy. Felsen [6, 19] and others pointed out that direc-
tions of phase and energy propagation in anisotropic me-
dia are different. Indeed, the phase propagates in the direc-
tion of the wave vector~k and phase velocity ~Vph = ω~k/|~k|2
whereas the energy propagates in the direction of the Poynt-
ing vector and the group velocity ~Vgr = ∂ω/∂~k. This fact
was used, for example, in [9, 10] for the wave field calcu-
lations in anisotropic plasmas. As it is widely known (see,
e.g., [20]) and follows from Fig. 1, the energy and phase of
quasi-electrostatic waves propagate perpendicularly to each
other. Limiting ourselves within the transverse (with re-
spect to the anisotropy axis) direction, we conclude from
Fig. 1 that energy and phase propagate (a) in opposite di-
rections if ε⊥ > 0 and ε‖ < 0 and (b) in one direction if
ε⊥ < 0 and ε‖ > 0. Since

H(1)
m (u)≈

√
2

πu
exp
(

iu− i
πm
2
− i

π

4

)
, (8)

H(2)
m (u)≈

√
2

πu
exp
(
−iu+ i

πm
2

+ i
π

4

)
(9)
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Figure 2. Geometry of the problem.

for u � 1 [21] and the time convention is selected as
exp(−iωt), solution (7) indeed corresponds to the outgo-
ing waves of energy.

The resulting expression (5) with (7) being substituted
into the integral contains factor exp(±iγ|kz|ρ + ikzz) if
ρ � 1/(γ|kz|) [see the asymptotic expansions (8) and (9)].
Thus the constant phase lines for the scattered field are
z± ρ tanθres = const (the sign in this relation depends on
the particular problem), and this is in agreement with Fig. 1.
The wave energy propagates along these lines, and the
phase propagates in a perpendicular direction.

3 The Case of a Plane Quasi-Electrostatic
Wave

In this section, we find a partial solution of (4) for the case
of scattering of a plane quasi-electrostatic wave by an in-
finitely long perfectly conducting right circular cylinder of
radius a. We assume that the cylinder axis coincides with
z-axis so ρ = a is the boundary between the cylinder and
background medium (see Fig. 2). To specify the electric
field of the incident wave, we introduce the new Cartesian
coordinates (τ,y,ξ ):

τ = xcosθres + zsinθres = ρ cosϕ cosθres + zsinθres,

ξ =−xsinθres + zcosθres =−ρ cosϕ sinθres + zcosθres.

The new τ- and ξ -axes are obtained using a rotation of x-
and z-axes to the resonance angle θres; y-axis remains un-
changed (see Fig. 2).

Taking into account that quasi-electrostatic waves are
quasi-longitudinal (~k ‖ ~E), we specify the electric field of
the plane incident wave as ~E i(~r) = E0

~ξ0 exp(ik0ξ ) where
E0 is the amplitude, ~ξ0 is a unit vector in the direc-
tion of ξ -axis, and k0 � kem is the wave number. The
corresponding electrostatic potential then equals Φi(~r) =
(i/k0)E0 exp(ik0ξ ), or

Φ
i(~r) =

i
k0

E0eik0zcosθrese−ik0ρ sinθres cosϕ . (10)

In this case, the unknown coefficients hm can be easily
found from the PEC boundary condition, and we come to
the following expressions for potential Φs and the electric



field components Es
ρ , Es

ϕ , Es
z :


Φs

Es
ρ

Es
ϕ

Es
z

= eik0zcosθres
+∞

∑
m=−∞

βm


F(Φ)

m (ρ)

F(ρ)
m (ρ)

F(ϕ)
m (ρ)

F(z)
m (ρ)

eimϕ (11)

where

βm = (−i)m+1 Jm(k0asinθres)

Hm(k0asinθres)
E0, (12)

F(Φ)
m (ρ) =

1
k0

Hm(k0ρ sinθres), (13)

F(ρ)
m (ρ) =

m
k0ρ

Hm(k0ρ sinθres)−

−sinθresHm−1(k0ρ sinθres), (14)

F(ϕ)
m (ρ) =− im

k0ρ
Hm(k0ρ sinθres), (15)

F(z)
m (ρ) =−icosθresHm(k0ρ sinθres), (16)

and Jm(u) is the Bessel function of the first kind of order m.
The calculated distribution of potential Φs(ρ,ϕ = 0,z) of
the scattered wave is shown in Fig. 3. The parameters used
for calculations are ε⊥ = 1, ε‖ = −3 (so θres = 60◦), a =
1 mm, and k0asinθres = 1. As one can see from Fig. 3, the
phase propagates perpendicularly to lines z− ρ tanθres =
const, and this is in agreement with Fig. 1.

The boundary condition for the normal component of the
total electric displacement field allows us to find the surface
charge density:

σ(ϕ,z) = ε0
[
σ

s(ϕ)+σ
i(ϕ)

]
exp(ik0zcosθres) (17)

where

σ
s(ϕ) =

+∞

∑
m=−∞

βmF(σ)
m (ϕ)exp(imϕ), (18)

F(σ)
m (ϕ) =

m
k0a

(ε⊥+ ε×)Hm(k0asinθres)−

−ε⊥ sinθresHm−1(k0asinθres), (19)

σ
i(ϕ) = (iε× sinϕ− ε⊥ cosϕ)E0×

×sinθres exp(−ik0asinθres cosϕ). (20)

When k0asinθres� 1 (i.e., the cylinder is thin), only terms
with m = 0 survive in expansions (11) and (18).

We note that forms of expressions for the electric field com-
ponents Es

ρ , Es
ϕ , Es

z are the same as in the corresponding
scattering problem in isotropic media [3]. The effects spe-
cific for a hyperbolic medium become apparent in the ra-
dial function Hm(k0ρ sinθres), i.e., the Hankel function of
either first or second kind depending on sgnε⊥ and sgnε‖.
In addition to this, the off-diagonal dielectric tensor compo-
nents appear in the expression for the surface charge den-
sity. We also note that, in this problem, it is easier to de-
fine the directivity pattern D and the radar cross section per

Figure 3. Distributions of real (top) and imaginary (bot-
tom) parts of potential Φs(ρ,ϕ = 0,z) of the scattered wave.
The dashed lines correspond to relation z− ρ tanθres =
const.

unit length RCS2D using the electrostatic potential in the far
zone (k0ρ → +∞) because it allows to obtain the expres-
sions very similar to the isotropic case [3] though the com-
mon definition of D and RCS2D is done with the Poynting
vector, electric field, or magnetic field [3]. Consequently,
we have

D(ϕ) =
d(ϕ)

max[d(ϕ)]
, (21)

k0 RCS2D(ϕ) =
4

sinθres

∣∣∣∣∣ +∞

∑
m=−∞

bm exp(imϕ)

∣∣∣∣∣
2

(22)

where

d(ϕ) =

∣∣∣∣∣ +∞

∑
m=−∞

bm exp(imϕ)

∣∣∣∣∣ , (23)

bm = (−i)m+1 Jm(k0asinθres)

Hm(k0asinθres)
exp
(

i
πm
2

sgnε⊥

)
. (24)

4 The Case of a Quasi-Electrostatic Wave
Packet

Since the harmonics of quasi-electrostatic waves (with dif-
ferent k) propagate in one direction (along the resonance
cone), it is a natural property of these waves that they have



a continuous and relatively wide spectrum of the wave num-
bers at the single frequency ω [20]. Assuming that each
harmonic of this packet has a form of (10), we have

hm(kz) =−
1

2πHm(γ|kz|a)
×

+∞∫
−∞

2π∫
0

Φ
i(ρ = a,ϕ ′,z′)exp(−ikzz′− imϕ

′)dz′dϕ
′, (25)

and the resulting expression for potential Φs(ρ,ϕ,z) of the
scattered wave is determined by relations (5) and (7).

As one can see from (5), (7), and (25), potential
Φs(ρ,ϕ,z) is generally difficult to calculate. However, if
max(kmax,∆) � 1/(asinθres), then the thin-cylinder ap-
proximation may be used. (Here, kmax corresponds to the
maximum of the incident wave spectrum and ∆ is the char-
acteristic scale, or width, of this spectrum.) In this case,
only terms with m = 0 survive in the series, and, in certain
cases, integration over kz can be performed analytically us-
ing asymptotic expansions.
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