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Abstract

Nonalcoholic Fatty Liver Disease (NAFLD) is highly

prevalent and may progress to chronic diseases if left un-

treated. Early detection and diagnosis are crucial to prevent

the complications associated with NAFLD. Fatty liver diag-

nosis is widely done through ultrasound scanning. Based on

the density of fat, the liver is classified into four categories.

The ultrasonic texture characteristics of liver parenchyma

vary with the concentration of fat, and hence the radiogra-

phers use this as a property to classify the fatty liver. Clas-

sifying the nonalcoholic fatty liver is highly challenging to

the radiographers due to the minute variations observed in

the characteristics of the texture. To assist the radiographers

in doing accurate diagnosis, we propose a novel computer-

assisted novel algorithm based on compressed transfer scat-

tering coefficients and ensemble subspace KNN classifier.

The proposed algorithm classified the texture with an accu-

racy of 98.8% when tested on a data size of 1000 images,

where each category consists of 250 images each.

1 Introduction

Excess deposits of fat in the liver also known as Nonal-

coholic Fatty Liver Disease (NAFLD) is the major cause

for chronic diseases such as cirrhosis, fibrosis, liver cancer,

etc. From recent studies, it is found that 40% of the pop-

ulation in developed countries and 20 to 30% population

in developing countries are suffering from the NAFLD [1].

Depending on the density of fatty granules, the fatty liver

is characterized into four categories namely normal, mild,

moderate and severe respectively. In general, patients suf-

fering from normal and mild fatty liver does not need med-

ication and is easily reversible, while the patients suffering

from moderate and severe fatty liver needs medical atten-

tion to prevent further complications associated with the

disease. The texture of liver parenchyma correspond to dif-

ferent grades of fatty liver is shown in Figure 1, these tex-

tures are cropped at the regions of liver parenchyma. The

textures of normal liver appear like flakes with coarser and

rugged. As the concentration of fat increases, the coarse-

ness of the texture reduces and becomes finer and finer. The

difference inferred across the texture of different grades of

fatty liver is minute, and hence it is very challenging for

Figure 1. Textures correspond to (a) normal (b) mild (c)

moderate (d) severe

the radiographers to classify the fatty content. A study says

that the radiographers have low mean intra and inter agree-

ment of 76% and 72% respectively in classifying normal

and fatty liver, while it is 47 to 59% and 59 to 64% re-

spectively in classifying between mild, moderate and severe

fatty liver [2].

A plethora of work has been reported regarding the

computer-aided diagnostic algorithms for fatty liver clas-

sification, but not much focus is laid on quantifying the dif-

ferent grades of the fatty liver [3]. Determining the exact

fatty content in the liver is very crucial in many cases. For

example in liver transplantation, there is a high probabil-

ity that receptor will suffer from liver failure if the donor

has a mild fatty liver. There is a high chance that the pa-

tient who undergoes liver resections will suffer from post-

operative complications. Under the circumstances, there is

a need for computer-aided diagnostic algorithms to accu-

rately quantify the fatty content in the liver. In [4], we

have proposed a classification algorithm based on scatter-

ing coefficients with cubic support vector machine (SVM)

classifier, where we achieved an accuracy of 96.6% in clas-

sifying the different grades of fatty liver. In this paper, we

present an extension of [4], where we obtained a better ac-

curacy with compressed transfer scattering coefficients with

ensemble subspace KNN classifier. Scattering Coefficients

(SC) gives the stable and translational invariant represen-

tations and also preserves the high-frequency information

which is useful for classification [5]. Ensemble subspace K

nearest neighbor classifier is used for classifying the texture

based on the SC’s features.
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Figure 2. Architecture of ISCN. The red bubbles represents SC’s, * indicates the convolution operator and m defines the depth

of the network.

2 Transfer Scattering Network based Fatty

liver Texture Classification.

The SC’s are computed using an Invariant Scattering Con-

volution Network (ISCN) architecture [5]. The invariant

representations of SC’s are obtained by progressively cas-

cading wavelet transform with modulus and averaging op-

erators. The computation of SC’s using ISCN is shown in

Figure 2. The red bubble indicates the SC’s while the white

bubble indicates the propagator signal |.| on which low pass

filtering results in SC’s. In the zeroth layer of a network, the

image is convolved with a low pass scaling function φ de-

fined as

Layer 0, Sx(0) : f (x)⋆φ2J , (1)

where f (x) represent an image, φ(x)2J = 2−2Jφ(2−Jx) rep-

resent Gaussian low pass filter, J denotes the largest scale

space variable and ⋆ denotes the convolution operation.

In the first layer, a low pass filter is convolved with the mod-

ulus of the complex wavelet transform of an image

Layer 1, Sx(λ ) : | f (x)⋆ψλ | ⋆φ2J , (2)

where ψλ (x) = 2−2 jψ(2− jrθ x) represent all the dilated and

rotated versions of the band pass wavelets with λ = (2 j,θ),
0≤ j1 < j2 < · · ·< js < · · ·< jt < · · ·< J, j is denotes scale

space variable, and rθ represent group of rotations com-

puted as θ : 2πl/L, where 0≤ l < L. The f ⋆ψλ computes

gradient of an image at different directions and scales cap-

turing high frequency. Since high frequency is the source of

variability, modulus operator is applied on f (x) ⋆ψ to ob-

tain an envelope of the signal which is equivalent to a low

pass signal thus reducing the variability in the signal. Ad-

ditionally, modulus operator avoids the wavelet coefficients

leading to zero while averaging which result in loss of in-

formation. The coefficients of | f (x) ⋆ψ | may still loose

information due to singularities i.e., | f (x) ⋆ψ |= 0 which

is prevented by choosing a complex wavelet of the form

ψ = ψa + iψb, (3)

where ψa and ψb denotes real and imaginary parts of

the complex wavelet. The modulus operator on complex

wavelet is computed by

| ψ |= (ψ2
a +ψ2

b )
1/2. (4)

The translation invariance is obtained by averaging the

modulus of complex wavelet coefficients. The averaging

operation i.e., convolution of φ2J with | f (x) ⋆ψ | will re-

sult in a shift invariance f (x) = f (x− t) where |t|< 2J .

The SC’s of the second layer is obtained as

Layer 2, Sx(λ1,λ2) : | f (x)⋆ψλ1
| ⋆ψλ2

| ⋆φ2J , (5)

where ψλ1
corresponds to all scales and rotations, while

ψλ2
corresponds only to the scales jt > js, since, the sec-

ond order interference coefficients are negligible for jt < js.

The coefficients obtained in the second layer extracts co-

occurrence information of the image at two scales 2 j1 and

2 j2 corresponding to two different orientations θ , which in-

terpreted as a interaction coefficients hence called as SC.

The high discriminative nature of the SC’s can be obtained

with higher depths. The discriminative nature of SC’s cor-

responding to the texture of four classes of fatty liver is vi-

sualized as the disk covering the entire frequency support of

image as shown in Figure 3. We can observe that SC’s gives

discriminative features both in the first and second layer for

all the four classes of NAFLD. For four scales and eight

orientations and for the network depth of two the invariant

scattering convolution network gives a total of 417 SC ma-

trices. If the image is of dimension [M,N], then the SC’s

obtained at each node is of dimension [M/2J−1,N/2J−1].
For the image of size [78,100] and for scale J = 4, the SC’s

are of the dimension [10,13]. Each coefficient is locally

invariant to a width of eight pixels. The SC’s are of high di-

mension, and if we use all these coefficients as features, the

classification algorithm will suffer from the curse of dimen-

sionality. To obtain the compact representation from SC’s

and to achieve global invariance to translations, the SC’s in

each index is summed and considered as a single feature.



Figure 3. Visual difference observed in SC’s (4 scales and 8 orientations) for different grades of fatty liver. (a), (d), (g), (j)

Texture images of of normal, mild, moderate and severe fatty liver respectively. (b), (e), (h), (k) First layer SC’s of normal,

mild, moderate and severe fatty respectively. (c), (f), (i), (l) Second layer SC’s of normal, mild, moderate and severe fatty

respectively.

The SC’s obtained after the second layer is embedded with

information about the SC’s from where it is propagated

from the previous layers. The efficacy of the features ex-

tracted from ISCN in classification lies in extracting the

representations which are not present in previous layers.

To decorrelate the redundant information present in deeper

layers, the SC’s are normalized by dividing children node

Sx(λ1,λ2) with corresponding parent node Sx(λ1). The effi-

ciency of SC features is evaluated with EKNN classifier. In

EKNN classifier, instead of using a single classifier, multi-

ple KNN classifiers with a subspace of features per classi-

fier have been used in classification. The optimal number

of classifiers, the number of features per classifier and the

number of nearest neighbors used for each classifier are de-

termined by cross-validation.

3 Results

The images are acquired using Siemens ultrasound scanner

with phased array transducer from Asian Institute of Gas-

troenterology Hyderabad. The dataset consists of 1000 tex-

ture images where each image category consists of 250 im-

age texture patches. The texture patches are cropped from

the liver parenchyma, and ensured that the image patches is

homogeneous and free from the blood nodules, periportal

veins, etc. Each texture image is of size 78 x 100. Ten-fold

cross-validation scheme is employed to test the proposed al-

gorithm. The optimal architecture for achieving maximum

classification accuracy have to be obtained empirically. The

accuracy of compressed transfer SC with EKNN classifier

with respect to orientations and scales is shown in Table. 1.

In the experiments, the number of learners in EKNN clas-

sifier is fixed to 30, the number of features for each clas-

sifier is taken half of the feature size and number of near-

est neighbours as 5. The maximum classification accuracy

of 98.2% is achieved at four scales and eight orientations.

By optimal tuning of the parameters of EKNN classifier,

the classification accuracy is further improved. The opti-

mal parameters of EKNN classifier are computed using the

ten-fold cross-validation. The optimal parameters are ob-

tained at K=5 nearest neighbors, the number of randomly

selected features at 93 and number of classifiers at 63.

The performance of the proposed feature extraction scheme

with some of the popularly used texture features in repre-

senting the liver ultrasonic texture is shown in Table. 2.

The performance of the features is evaluated with KNN,

cubic SVM and EKNN classifier. The proposed transfer

SC features with EKNN classifier has performed better than

the texture features used in the literature for representing

the ultrasonic texture of liver. SC’s performed better when

compared to other texture features, since the SC’s extract

the sufficient gradient information with respect to different

scales and orientations, and have the provision to extract as

many features as possible which is needed for classification.

The confusion matrix for the proposed algorithm is shown

in Table. 3, moderate fatty liver classified with an accuracy



Table 1. Accuracy(%) of the transfer based SC features

for different scales and orientations with EKNN classifier,

depth of the network m = 2 and size of the image 78×100.

Features from all the layers are concatenated as a single fea-

ture vector and used in classification. For EKNN classifier,

number of learners is fixed to 30, subspace dimension of

features is taken half of feature size.

Orientations

Scales 2 3 4 5 6 7 8

2 88.1 90.1 91.4 90.9 92.2 93.3 94.8

3 91.0 93.0 95.5 94.9 96.5 96.9 97.4

4 92.9 94.6 95.2 96.2 96.9 98.0 98.2

5 93.3 95.4 96.1 96.5 97.6 96.9 97.8

6 94.6 95.5 95.9 96.2 96.1 95.6 96.2

Table 2. Performance of the popularly used texture features

in grading the fatty liver.

Features KNN SVM EKNN

GLCM [6] 86.7 92.3 91.4

GLRLM [6] 85.8 92.4 90.4

Laws [7] 82.9 88.5 91.6

GIST [8] 80.8 90.1 88.7

Wavelet_Energy [9] 87.5 90.4 88.2

Gabor_Energy [9] 87.4 92.8 91.1

Transfer SC features 94.0 96.5 98.8

of 100%, while the severe fatty liver classified with an accu-

racy of 99.6%, while the normal and mild texture classified

with an accuracy of 98.8% and 96.8% respectively. Con-

sidering the normal textures as negative images and mild,

moderate and severe as positive images, the proposed al-

gorithm classified the nonalcoholic fatty liver texture with

a sensitivity of 98.8% (741 out of 750 images with fatty

liver identified correctly) and specificity of 98.8% (247 out

of 250 images with normal liver identified correctly). It is

also observed that no images of moderate and severe are

misclassified as normal and mild which is the significant

advantage from the proposed algorithm since the risk asso-

ciated in classifying the diseased case as normal is high.

4 Conclusion

In this paper, we proposed a novel compressed transfer SC

based features for classifying the textures correspond to

Table 3. Confusion matrix for the SC features extracted for

computed for a network depth m = 2 with EKNN classifier.

Predicted Class

True Class normal mild moderate severe

normal (250) 247 2 1 0

mild (250) 2 242 5 1

moderate (250) 0 0 250 0

severe (250) 0 0 1 249

NAFLD. The proposed feature extraction scheme proved

very effective in representing the texture of fatty liver which

replicated in achieving good classification accuracy. The

proposed algorithm can assist the radiographers to quantify

the fatty content in the liver, and it can also be used to as-

sist the semi-skilled persons in remote areas to diagnose the

patients.
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