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Abstract

Radio Astronomy, by its very nature, detects extremely
faint cosmic radio signals and is therefore very susceptible
to Radio Frequency Interference (RFI). We present some
initial results of our work to identify RFI using a Machine
Learning (ML) based approach. The data is taken from
VLBI observations data from three well separated observa-
tories in Australia: ATCA, Parkes and Mopra; and we work
with the 2-bit data directly from the telescopes. Our ap-
proach uses a Generative Adversarial Network (GAN) and
an autoencoder to perform unsupervised machine learning
on the data.

1 Introduction

In this paper we present our ongoing efforts towards devel-
oping new and robust methods to identify Radio Frequency
Interference for the next generation of Radio Telescopes,
using unsupervised and supervised Machine Learning. The
sensitivity of the new instruments in development will in-
troduce many new sources of RFI that have, to date, been
unobserved. The Square Kilometre Array (SKA) [1] will
require advances of several orders of magnitude in the pro-
cessing of data, pushing RFI identification, classification
and excising into the ‘Big-Data challenge’ [2].

Current generation radio telescopes such as: the Murchison
Widefield Array (MWA) [3], the Australian SKA Pathfinder
(ASKAP) [4], the Upgraded Giant Metrewave Radio Tele-
scope (GMRT) [5], the Low Frequency Array (LOFAR) [6],
MeerKAT [7] and the Very Large Array [8] are seeing in-
teresting new sources of RFI. These include, but are not
limited to: FM radio stations, cellular phone towers (di-
rectly and reflected), electricity grid equipment, office and
kitchen appliances and digital TV stations. Some of the
interference appears through tropospheric ducting [9] from
sources 100-800 km away.

As an example of the impact of RFI on existing instruments
and surveys, figure 1 shows the flagging of channels for
phases 1 and 2 of the CHILES project [10], which uses the
VLA, with some bands being 100% flagged due to RFL

Mosiane et al. [11] used statistical machine learning (K-
Nearest Neighbour, Random Forest Classifier, and Naive
Bayesian) on KAT-7 data and achieved impressive results.
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Figure 1. Flagging of Phase 1 and Phase 2 of CHILES.

Their work shows the potential of using statistical machine
learning approaches. Our work moves into the domain of
non-linear analysis using Deep Learning Neural Networks.

2 The Dataset

The dataset used for this study is from VLBI observations
that provided contemporary data from three well separated
observatories: ATCA, Parkes and Mopra. The VLBI was 2-
bit (4 level) data, divided into 4 adjacent spectral windows
of 16MHz in dual polarisation (right handed and left handed
circular (RHC and LHC)). The lowest frequency was 6.3
GHz.

The VLBI dataset consisted of 1 minute of continuously
sampled data every hour over the experiment (V255ae),
which provided 8 files from each of the three sites. The
RFI conditions from each of these sites, being hundreds of
kilometres apart, are independent; Parkes is considered to
have the more challenging RFI contamination, but ATCA
and Mopra can also be poor at times. Experiment V255 is
a maser VLBI project, so at times the data will contain a
strong spectrally pure line feature. It is important that the
RFI excision does not remove this signal.

As VLBI data analysis consists of the correlated signals
from the independent telescopes where the 2-bit data is col-
lected. This data is recorded and then transported to a com-
mon site for correlation. When the voltage signals are due
to Gaussian noise, as it would be when dominated by the
amplifier noise at the telescope, the losses associated with
using low quantisation data are very low: only 22% for 2-
bit data.



3 Machine Learning

3.1 Data Preparation

Each of the three VLBI datasets obtained from ATCA, Mo-
pra, and Parkes are contained in VLBI files of roughly
4GiB. The samples from each dataset cannot be directly
used and must be transformed into 32-bit floating point val-
ues. Each sample is inflated by a factor of 16 during trans-
formation, resulting in 64GiB of output for each dataset.
Due to their size, these transformed datasets are very chal-
lenging to use directly for GAN training. They require so-
phisticated loading and caching techniques to process them
efficiently within the ML environment.

As part of the analysis of the VLBI data, a number of plots
were generated. Figures 2 and 3 show the amplitude spec-
tral density, and spectrogram of the first 30ms of samples
from the ATCA dataset.
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Figure 2. Amplitude Spectral Density of Polarisation 1,
Frequency 0 of the first 30ms of the ATCA dataset.
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Figure 3. Spectrogram of Polarisation 1, Frequency O of
the first 30ms of the ATCA dataset.

3.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were originally
described by Goodfellow[12]. A GAN consists of a dis-
criminator network and a generator network that are trained
in unison. The discriminator is a classifier network that
receives input from both a real data source, and from the
generator. The goal of the discriminator is to determine
whether its input is from the real data source, or whether

it was created by the generator. The generator accepts a
noise vector as input, and attempts to produce an output
that the discriminator will classify as being from the real
data source. Together, the discriminator and generator op-
erate as an actor-critic model, in which the generator tries
to fool the discriminator into classifying its output as real,
and the discriminator tries to classify the generator’s output
as fake.

Once a GAN is fully trained, the discriminator and genera-
tor can be used in isolation. The generator can be used to
generate data that looks like it could be from the real data
source, and the discriminator can be used to determine if
data is from the real data source. The discriminator is now
working, effectively, as an anomaly detector; when it flags
a sample as being fake, that sample has some “unknown”
anomaly which can be analysed and classified.

3.2.1 Network Design

The discriminator uses a dense network structure as shown
in figure 4, in which we take a Fast Fourier Transform (FFT)
over each small time-step and the resulting real and imag-
inary components of the complex result are concatenated
and processed by dense layers. This approach analyses the
sample in the frequency domain, and is therefore time in-
variant.
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Figure 4. Dense structure for discriminator. The dense
components are repeated multiple times.

The generator is modelled as an autoencoder that can be
split into encoder and decoder components. The encoder
accepts a vector of RFI data and produces an encoded rep-
resentation of the data, and the decoder accepts an encoded
representation and produces a vector of RFI. The output of
the decoder is then compared with the input to the encoder
to calculate the losses than need to be propagated back into
the dense layers. Figure 5 illustrates this design. As a pre-
liminary training step, the generator is trained on the RFI
data as a full autoencoder, in which RFI data is passed
through the encoder and decoder components. Once trained
to a suitable level, the decoder component is separated and
is used as the generator for GAN training. The noise vector
is used as input into the trained decoder to produce a vector
of RFL

The losses of both the discriminator and generator are cal-
culated using the Binary Cross Entropy loss function that
is applied to the one hot classification vector output by the
discriminator. Optimisation is done using an Adam opti-
miser[13].
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Figure 5. Autoencoder structure for generator. The en-
coder and decoder layers are repeated multiple times.

Implementation of the GAN and autoencoder is done using
PyTorch 0.4.1[14] and Python 3.6, to take advantage of its
multi-gpu support, rich machine learning feature set, and
easy to use APL.

3.2.2 Training Loop

Our GAN training loop is similar to the training algorithm
described by Goodfellow[12], with the primary difference
being we train the discriminator and generator once per
step, as opposed to training the discriminator once per step,
and the generator once per epoch. Algorithm 1 illustrates
the training loop using pseudocode.

ALGORITHM 1
Pseudocode for training the discriminator and generator.
1: rfi_Ibls « [0, 1]
2: not_rfi_Ibls « [1,0]
3: while epoch < max_epoch do
4: while step < max_step do

5: g < gaussian_noise_minibatch
6: r < rfi_minibatch
7:
8: dr < discriminator output r
9: gg < generator output g
10: dgg <+ discriminator output gg
11:
12: loss +loss(not_rfi_Ibls,dgg) + loss(rfi_lbls,dr)
13: discriminator backpropagate loss
14:
15: gl < gaussian_noise_minibatch
16: gg1 + generator output gl
17: class + discriminator output ggl
18:
19: generator backpropagate loss(rfi_lbls, class)
20: end while

21: end while

4 Preliminary Results

At the time of writing we have prototypes of the GAN op-
erating correctly using the generator as a full autoencoder.
The ML models for each of the telescopes are trained inde-
pendently, as the response of each instrument is different.

Figure 6 shows the generator’s loss over about 50 epochs
and 8000 training batches. The loss decreases quickly
and asymptotes to around 0.015 after the first 500 training
batches. At this point the autoencoder has learnt how to de-
code the input sample and encode it in a more concise form,
and to rebuild the original sample from the concise form.
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Figure 6. Experimental Autoencoder Loss over 8000 train-
ing batches.

Figure 7 shows an example of the output from the generator
after 50 epochs. As can be seen, the output of the generator
shows the symmetry across the real values of the FFT, but
the magnitude of the output values are off by a factor of 10.
This is because, at the moment, the final activation function
is a Tanh function which constrains the output to -1 to 1.
These issues will be resolved by using a deeper network
with more training data and modifying the final activation
function.

5 Conclusions and Future Work

Using unsupervised machine learning to identify RFI is a
new approach for the use of ML in Radio Astronomy. Our
early results from the autoencoder are extremely promising
and highlight that this approach has merit. We are able to
learn to generate realistic simulations of “normal” samples
for the various instruments and the GAN is starting to be
able to detect fake samples from real samples. This gives
us a self learning anomaly detection system.

Our future work is to continue developing the system so that
it can classify the RFI, and then, ultimately, excise it from
the signal. We will be introducing an attention model [15],
so the autoencoder and GAN can learn which frequencies
are most significant when developing a characterising of the
default samples. Initially ML will not be able to identify
the source of the RFI. This will still require a human RFI
expert. Once the expert has classified the RFI and we have
examples of it, we will develop formal ML classification
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Figure 7. Generator output after 50 epochs compared to
Real Data.

systems that will be able to automatically identify the type
of RFI after the GAN has identified its presence.

We are currently beginning work with colleagues in Thai-
land, and China with access to other instruments. We plan
to characterise each instrument and develop a database of
known RFI sources for each instrument. We expect some
common RFI sources will be able to be classified based on
identification on different instruments.
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