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Abstract

Excitation of electromagnetic waves by distributed given
sources located on the surface of an open cylindrical waveg-
uide filled with a gyrotropic medium is studied. It is
assumed that the waveguide is placed in free space and
aligned with an external static magnetic field. The con-
sidered sources have nonsymmetric electric-current dis-
tributions. The radiation resistances of the sources are
numerically calculated using an approach based on an ex-
pansion of the total field in terms of the discrete- and
continuous-spectrum waves.

1 Introduction

In the past decades, there has been a great deal of inter-
est in the problem of excitation and propagation of guided
electromagnetic waves in the presence of cylindrical irreg-
ularities with gyrotropic properties. In the case of a mag-
netoplasma, such an interest is explained by an important
role that such waves play in various processes in the Earth’s
ionosphere [1] and the laboratory experiments with heli-
con antennas [2, 3] and helicon plasma sources which can
be used in high-energy particle accelerators [4]. An over-
whelming majority of theoretical works deal with the cases
where electromagnetic waves in such systems are excited
by an axisymmetric source in the form of a loop antenna.
Moreover, in most works, consideration is limited to the ex-
citation of only the discrete-spectrum waves (eigenmodes).
For arbitrary sources, an exhaustive theoretical investiga-
tion was made in [5] for a cylindrical guiding structure sur-
rounded by a general anisotropic medium. However, the
radiation from the source having the nonsymmetric distri-
bution of the current and operating in an open gyrotropic
waveguide, which is surrounded by an isotropic medium,
has not yet been studied in sufficient detail. Therefore, this
type of sources, which is close to helicon antennas, requires
more detailed analysis.

This work employs the theoretical approach developed for
estimating the characteristics of the helicon-type sources.
The energy characteristics of the antenna are obtained by
solving the problem of wave excitation by the antenna cur-
rent. The analysis is performed using the full-wave ap-
proach presented in [6].

2 Formulation of the Problem

We consider an infinitely long cylindrical waveguide of ra-
dius a which is filled with a gyrotropic medium and located
in free space. In our case, the gyrotropic medium is a cold
collisionless magnetoplasma. It is assumed that the axis of
the waveguide is parallel to an external static magnetic field
B0 and coincides with the z axis of a cylindrical coordinate
system (ρ,φ ,z). The field is excited by a source placed on
the surface of the cylinder with the current density distribu-
tion written, with the exp(iωt) time dependence dropped,
as

J(r) =(φφφ 0 jφ + z0 jz)δ (ρ−a)

× exp(−imφ − ik0 p0z) , |z|< d, (1)

where d is the half-length of the antenna. The electric
current components are assumed to be related to the total-
current amplitude I0 as |I0|2 = |Iφ |2+ |Iz|2, where Iφ = 2d jφ
and Iz = 2πa jz. The quantities m and p0 in Eq. (1) de-
fine the nonunifom current distribution along the azimuthal
and longitudinal coordinates, respectively, and k0 = ω/c is
the free-space wave number (c is the speed of light in free
space). The cold collisionless magnetoplasma is described
by the dielectric permittivity tensor

ε̂ =

 ε −ig 0
ig ε 0
0 0 η

 , (2)

where

ε =1+
ω2

p

ω2
H−ω2 +

Ω2
p

Ω2
H−ω2 ,

g =−
ω2

p ωH

ω2
H−ω2 +

Ω2
pΩH

Ω2
H−ω2 , (3)

η = 1−
ω2

p

ω2 −
Ω2

p

ω2 .

Here, ωp and Ωp are the electron and ion plasma frequen-
cies, and ωH and ΩH are the gyrofrequencies of the cor-
responding particles, respectively. It should be noted that
the Gaussian system of units is used throughout the work,
except for the numerical results presented in the figures in
what follows.



3 The Source-Excited Field in the Presence
of an Open Cylindrical Waveguide

The field excited by the source with current density (1) in
the source-free regions |z|> d can be represented as an ex-
pansion in terms of the discrete- and continuous-spectrum
waves as follows:[

E(r)
H(r)

]
= ∑

n
as,m,n

[
Es,m,n(r)
Hs,m,n(r)

]
+

2

∑
α=1

∫
∞

0
as,m,α(q)

[
Es,m,α(r,q)
Hs,m,α(r,q)

]
dq. (4)

Here,[
Es,m,n(r)
Hs,m,n(r)

]
=

[
Es,m,n(ρ)
Hs,m,n(ρ)

]
exp(−imφ − ik0 ps,m,nz),[

Es,m,α(r,q)
Hs,m,α(r,q)

]
=

[
Es,m,α(ρ,q)
Hs,m,α(ρ,q)

]
exp(−imφ − ik0 ps(q)z),

where Es,m,n(ρ), Bs,m,n(ρ) and Es,m,α(ρ,q), Bs,m,α(ρ,q)
are vector functions describing the radial distributions of
the fields of the discrete- and continuous-spectrum waves,
respectively; m is the azimuthal index of the modes; the
subscript s obeys the relations s = + for z > d and s = −
for z < −d; n is the radial index of eigenmodes (discrete-
spectrum waves) with the longitudinal wave numbers ps,m,n
(p+,m,n = −p−,m,n); the subscript α corresponds to two
kinds of the continuous-spectrum waves for which the func-
tion ps(q) = (1−q2)1/2 is the longitudinal wave number in
free space, and q is the transverse wave number in the outer
region (ρ > a) normalized to k0. It is assumed that the fields
are regular on the z axis and satisfy the boundedness condi-
tions at infinity. Detailed expressions for the field compo-
nents of the discrete- and continuous-spectrum waves can
be found in [6]. It is taken into account in Eq. (4) that only
the modes with the azimuthal index m are excited by source
(1). The quantities as,m,n and as,m,α(q) can be obtained us-
ing the well-known technique developed for finding the ex-
citation coefficients of the modes of open waveguides [7],
and are given by the formulas

as,m,n =
1

Ns,m,n

∫
J(r) ·E(T)

−s,−m,n(r)dr

=
[

jφ E(T)
φ ;−s,−m,n(a)+ jzE

(T)
z;−s,−m,n(a)

]
× 4πa

Ns,m,n

sin [k0(p0− ps,m,n)d]
k0(p0− ps,m,n)

,
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1

Ns,m,α(q)
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J(r) ·E(T)

−s,−m,α(r,q)dr

=
[

jφ E(T)
φ ;−s,−m,α(a,q)+ jzE

(T)
z;−s,−m,α(a,q)

]
× 4πa

Ns,m,α(q)
sin [k0(p0− ps(q))d]

k0(p0− ps(q))
, (5)

where integration is performed over the region occupied
by current (1), the superscript (T) denotes fields taken in
an auxiliary medium described by the transposed dielec-
tric tensor ε̂T, Ns,m,n and Ns,m,α(q) are the normalization

quantities which are defined by the orthogonality relations
presented in [6].

It can also be established that the fields with the azimuthal
index m in Eq. (4) satisfy the following power orthogonality
relations in the case of a lossless medium:

∞∫
0

[
Es,m,n(r)×H∗s̃,m,ñ(r)

+E∗s̃,m,ñ(r)×Hs,m,n(r)
]
· z0ρdρ

=
8
c
Ps,m,nδs,s̃δn,ñ,

∞∫
0

[
Es,m,α(r,q)×H∗s̃,m,α̃(r, q̃)

+E∗s̃,m,α̃(r, q̃)×Hs,m,α(r,q)
]
· z0ρdρ

=
8
c
Ps,m,α(q)δ (q− q̃)δs,s̃δα,α̃ ,

∞∫
0

[
Es,m,α(r,q)×H∗s̃,m,ñ(r) (6)

+E∗s̃,m,ñ(r)×Hs,m,α(r,q)
]
· z0ρdρ = 0.

Here, δα,β is the Kronecker delta, δ (q) is the Dirac func-
tion, and the asterisk denotes complex conjugation. Note
that P+,m,n = −P−,m,n and P+,m,α(q) = −P−,m,α(q).
With allowance for this fact and relations (6), the total
power radiated from the source is represented as

PΣ = ∑
s=±

Ps sgns, (7)

where

Ps = ∑
n
|as,m,n|2Ps,m,n +

2

∑
α=1

1∫
0

|as,m,α(q)|2Ps,m,α(q)dq. (8)

Note that the terms under the summation sign in Eq. (7) are
the powers radiated to the positive (s =+) or negative (s =
−) direction of the z axis. Introducing the total radiation
resistance RΣ = 2PΣ/|I0|2 of the source, we obtain

RΣ = Rmod +Rcs, (9)

where

Rmod = ∑
n

Rn, Rcs =

1∫
0

Rcs(q)dq, (10)

Rn =
2
|I0|2

(
|a+,m,n|2 + |a−,m,n|2

)
P+,m,n,

Rcs(q)=
2
|I0|2

2

∑
α=1

(
|a+,m,α(q)|2+|a−,m,α(q)|2

)
P+,m,α(q).

Here, Rn and Rcs are the partial radiation resistances which
correspond to the powers going to the nth eigenmode and



the continuous-spectrum waves, respectively. Integration in
Eq. (10) is performed over the q values for which the func-
tion ps(q) is purely real. The quantity Rcs(q) has the mean-
ing of spatial-spectrum distribution of the partial radiation
resistance for the continuous-spectrum waves.

4 Numerical Results

4.1 Radiation Resistances in the Resonant
Frequency Ranges of a Magnetoplasma

The partial radiation resistances were calculated for the
source with parameters typical of helicon antennas which
are often used in the laboratory experiments [2 – 4]. In
expression (1) for the current density, we put a = 2.5 cm,
d = 4a, p0 = 0, and m = 1. First, let the source fre-
quency ω belong to the resonant interval ωLH < ω < ωH of
the whistler range, where ωLH = (ωHΩH)

1/2 is the lower-
hybrid frequency. Figure 1(a) shows the partial radiation
resistances Rn for the individual eigenmodes with the radial
indices n at ω/ωH = 2.5 · 10−2. In this case, the waveg-
uide supports an infinite number of the propagated eigen-
modes which are excited by source (1) due to a resonance
character of the plasma. The most efficient excitation is ob-
served for the modes with pn < P = (ε − g)1/2 = 44.48,
for which both the helicon and quasielectrostatic parts of
the mode fields have the volume structure. The value of
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Figure 1. (a) Partial radiation resistances Rn for the indi-
vidual eigenmodes with the radial indices n and the lon-
gitudinal wave numbers pn and (b) the distribution of Rcs
over q for ω/ωH = 2.5×10−2, ωp/ωH = 6.95, ωLH/ωH =
3.7×10−3, and jz = 0.25 jφ .

P is indicated by the vertical dashed line in Fig. 1(a). In
the considered case, the radiation resistance for the eigen-
modes amounts to Rmod ' 0.52 Ω. Moreover, it was estab-
lished that for the given length-to-radius ratio of the source,
an increase in the axial component jz of the current density
with respect to its azimuthal component jφ leads to redis-
tribution of the radiated power to the higher-order modes
with pn > P. It is worth noting that the value of Rmod
also increases in this case. The distribution of the quan-
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Figure 2. The same as in Fig.1 but for ω/ωUH = 0.995.

tity Rcs over the spatial spectrum of the excited waves is
illustrated by Fig. 1(b) at the same frequency. The radi-
ation resistance corresponding to the continuous-spectrum
waves is equal to Rcs = 1.1 · 10−6 Ω. It is evident that the
inequality RΣ ' Rmod� Rcs holds with a sufficient margin.
This means that almost all the radiated power goes to the
eigenmodes in the considered frequency range. Analogous
dependences for Rn and Rcs are shown in Fig. 2 in the case
where the frequency of the excited field belongs to the range
ωp < ω < ωUH, where ωUH = (ω2

H +ω2
p )

1/2 is the upper-
hybrid frequency. Here, the radiation resistance for the
eigenmodes amounts to Rmod ' 0.075 Ω. However, in con-
trast to the previous case, the total radiation resistance of the
antenna is mainly determined by the continuous-spectrum
waves, for which Rcs = 62.3 Ω.

4.2 Radiation Resistances of Short and Long
Antenna

The radiation resistances for antennas with the purely longi-
tudinal (R(z)

mod) and purely azimuthal (R(φ)
mod) components of

the current density (1) as functions of the parameter d/a are



presented in Fig. 3(a) for a wide range of d. It can be seen
that for a long antenna (compared with its radius), the ra-
diation resistance is mainly determined by the longitudinal
component of the electric current density. On the contrary,
a relatively large value of R(φ)

mod is observed for small val-
ues of d (short antenna). Figure 3(b) shows the ratios of the
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Figure 3. (a) Radiation resistances R(z)
mod (solid line) and

R(φ)
mod (dashed line) as functions of the parameter d/a. (b)

Ratios of the absolute values of the tangential electric-field
components for the individual eigenmodes at the surface of
the waveguide. The same parameters as in Fig.1.

longitudinal and azimuthal electric-field components on the
surface of the cylinder for individual modes with the radial
indices n and the longitudinal wave numbers pn. The radia-
tion resistance of the antennas with various electric current
distributions can be tuned by choosing the appropriate value
of p0 = p̃ in Eq. (1). For example, if we put p0 = 200.7
( p̃ ' p75), the radiation resistance R(φ)

mod = 4.82 Ω, while

R(z)
mod = 12.32 Ω for the sources with d = a. On the con-

trary, it is seen in Fig.3 (a) that for the same length of the
antenna and p0 = 0, the inverse inequality R(φ)

mod � R(z)
mod

takes place.

5 Conclusions

In this work, the radiation characteristics of the nonsym-
metric antenna placed on the surface of an open cylindri-
cal gyrotropic waveguide have been studied. The radiation
resistances of such a source have numerically been calcu-
lated for two characteristic frequencies. It is shown that

in the low-hybrid frequency range, almost all the radiated
power goes to the guided waves (eigenmodes), in contrast
to the case of the upper-hybrid range where the radiation
resistance of the antenna is determined by the contribution
of the unguided (continuous-spectrum) waves. It has been
demonstrated that the values of the radiation resistances of
the antennas with the purely azimuthal and purely longitu-
dinal electric-current components can significantly be var-
ied, depending on the longitudinal current-density distribu-
tion.
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