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Abstract

The propagation of electromagnetic waves guided by an ar-
ray of parallel identical cylinders that are filled with a gy-
rotropic medium and placed in free space is studied. It is as-
sumed that the gyrotropic medium is a cold magnetoplasma
and the cylinders are aligned with an external static mag-
netic field. It is shown that a guiding structure consisting
of several identical gyrotropic cylinders supports the prop-
agation of a greater number of modes than a single-cylinder
waveguide. Conditions are found under which the mutual
influence of the cylinders can be neglected when calculat-
ing the properties of the guided modes.

1 Introduction

The recent decades have shown an enhanced interest in the
excitation and propagation of nonsymmetric electromag-
netic waves supported by arrays of open waveguides filled
with nonreciprocal media. Such guiding structures can play
an important role in many applications ranging from the
laboratory radio-frequency plasma sources [1] to optical
transmission systems [2]. The features of propagation of
eigenmodes of the corresponding waveguides are of pri-
mary importance for developing and advancing such appli-
cations. Although the propagation features of eigenmodes
of individual open cylindrical gyrotropic waveguides are
well studied [3, 4], the properties of modes of a complex
waveguide consisting of a few such guiding structures have
poorly been presented in the literature.

This work is devoted to a study of the dispersion properties
of modes of a system that consists of identical gyrotropic
cylinders located in free space.

2 Formulation of the Problem and Basic
Equations

Consider an array of identical, infinitely long circular cylin-
ders of radius a, which are located in free space and filled
with a gyrotropic medium, namely, a cold magnetoplasma
(see Fig. 1). The cylinders are parallel to the z axis of a
Cartesian coordinate system (x,y,z) and are aligned with an
external static magnetic field B0. In this case, the plasma is

described by the permittivity tensor

ε̂ =

 ε −ig 0
ig ε 0
0 0 η

 . (1)

Here,

ε = 1−
ω2

p (ω− iνe)

[(ω− iνe)2−ω2
H]ω

, η = 1−
ω2

p

ω(ω− iνe)
,

g =
ω2

p ωH

[(ω− iνe)2−ω2
H]ω

, (2)

where ωH is the electron gyrofrequency, ωp is the elec-
tron plasma frequency, and νe = νei + νen is the sum of
the electron–ion and electron–neutral collision frequencies
in the plasma. In the tensor elements, we neglected the
contribution of ions. This is possible under the condition
|ω − iνe| � ωLH [4], which is assumed throughout this
work (here, ωLH is the lower hybrid resonance frequency).
The Gaussian system of units is used in this paper.

The field in the coordinate system of the jth cylinder, with
the exp(iωt) time dependence dropped, can be represented
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Figure 1. Geometry of the problem. Observation point
P with its radial and azimuthal coordinates, (ρ j, φ j) and
(ρs, φs), in the coordinate systems related to the jth and the
sth cylinders, respectively.



in terms of azimuthal harmonics as

E j =
∞

∑
m=−∞

E j,m exp[−i(mφ j + k0 pz)],

H j =
∞

∑
m=−∞

H j,m exp[−i(mφ j + k0 pz)], (3)

where m is the azimuthal index (m = 0,±1,±2, . . .), k0 is
the wave number in free space, and p is the normalized (to
k0) longitudinal propagation constant. In turn, the vector
quantities E j,m and H j,m can be expressed via their longitu-
dinal components Ez; j,m and Hz; j,m that satisfy the following
equations in the plasma medium [4]:

L̂mEz; j,m−k2
0

η

ε
(p2−ε)Ez; j,m=− ik2

0
g
ε

pHz; j,m,

L̂mHz; j,m−k2
0

(
p2+

g2

ε
−ε

)
Hz; j,m=ik2

0
g
ε

η pEz; j,m, (4)

where L̂m =
d2

dρ2
j
+

1
ρ j

d
dρ j
− m2

ρ2
j
. The transverse field

components Eρ; j,m, Eφ ; j,m, Hρ; j,m, and Hφ ; j,m can be ex-
pressed via Ez; j,m and Hz; j,m (see [4]).

The azimuthal harmonics of the longitudinal field compo-
nents inside the jth cylinder are represented in the form [4]

E(c)
z; j,m =

i
η

2

∑
k=1

B(k)
j,mnkqkJm(k0qkρ j),

H(c)
z; j,m =−

2

∑
k=1

B(k)
j,mqkJm(k0qkρ j). (5)

Here, the superscript (c) denotes the field inside the cylin-
der, Jm is a Bessel function of the first kind of order m, B(1)

j,m

and B(2)
j,m are the amplitude coefficients corresponding to the

azimuthal index m, and

q2
k(p)=

{
ε

2−g2+εη−(ε+η)p2+(−1)k
[
(ε−η)2 p4

+2
(
g2(ε+η)−ε(ε−η)2)p2+(ε2−g2−εη)2

]1/2
}
/(2ε),

nk=−
ε

pg

(
p2 +q2

k +
g2

ε
− ε

)
, k = 1,2. (6)

The presence of two transverse wave numbers q1 and q2
in the magnetized plasma medium, which correspond to
the same longitudinal wave number p, is related to the
anisotropic properties of a magnetoplasma.

The field outside the jth cylinder is represented as a super-
position of the field scattered by the jth cylinder and the
field incident on this cylinder from other cylinders. The
scattered field, which is denoted by the superscript (s), is
also written in terms of cylindrical functions and has the
following longitudinal components:

E(s)
z; j,m =C(1)

j,mqH(2)
m (k0qρ j),

H(s)
z; j,m =C(2)

j,mqH(2)
m (k0qρ j), (7)

where H(2)
m is a Hankel function of the second kind of order

m, C(1)
m and C(2)

m are the scattering coefficients correspond-
ing to the azimuthal index m, and q is the normalized (to
k0) transverse wave number in the outer region, which is
written as q = (1− p2)1/2.

The azimuthal harmonics of the field incident on the jth
cylinder from, e.g., the sth cylinder can be rewritten in the
coordinate system related to the jth cylinder with the help
of Graf’s addition theorem for cylindrical functions [5]:

H(2)
m (k0qρs)e−imφs

=
∞

∑
n=−∞

Jn (k0qρ j)H(2)
n−m (k0qρs j)ei(n−m)φs j−inφ j , (8)

where the condition ρ j < ρs j should be satisfied. In what
follows, this condition is ensured due to the fact that Eq. (8)
is used only for representing the incident field on the sur-
face of each cylinder, i.e., at ρ j = a < ρs j. Other notations
in Eq. (8) are clarified in Fig. 1. Hence, the azimuthal har-
monics of the longitudinal field components in the outer
region in the coordinate system of the jth cylinder are rep-
resented in the form

Ez; j,m = E(s)
z; j,m +E(i)

z; j,m, Hz; j,m = H(s)
z; j,m +H(i)

z; j,m, (9)

where

E(i)
z; j,m = C

(1)
j,mqJm (k0qρ j) , (10)

H(i)
z; j,m = C

(2)
j,mqJm (k0qρ j) , (11)

C
(k)
j,m =

Nc

∑
s 6= j

∞

∑
n=−∞

C(k)
s,n H(2)

m−n (k0qρs j)ei(m−n)φs j . (12)

Here, Nc is the total number of the cylinders, and the sum-
mation with respect to s is performed over all the cylinders,
excepting the jth one. The terms (10) and (11) can be in-
terpreted as the longitudinal components of the field of a
cylindrical wave that is incident on the jth cylinder. The
continuity conditions of the tangential field components at
ρ j = a allows one to obtain the dispersion relation deter-
mining the longitudinal wave numbers p of modes which
are guided by the array of cylinders. For the jth cylinder,
these boundary conditions at ρ j = a are written as

E(c)
z; j,m = E(s)

z; j,m +E(i)
z; j,m, H(c)

z; j,m = H(s)
z; j,m +H(i)

z; j,m,

E(c)
φ ; j,m = E(s)

φ ; j,m +E(i)
φ ; j,m, H(c)

φ ; j,m = H(s)
φ ; j,m +H(i)

φ ; j,m. (13)

Application of conditions (13) to each cylinder successively
for m = 0,±1,±2, . . . ,±M yields a system of 4Nc(2M +

1) homogeneous equations for the coefficients B(1)
j,m, B(2)

j,m,

C(1)
j,m, and C(2)

j,m, where M is the absolute value of the number
of the highest-order azimuthal harmonic still taken into ac-
count. The choice of a finite total number of the azimuthal
harmonics is determined by the required accuracy of nu-
merical calculations. The obtained system of 4Nc(2M+1)
homogeneous equations yields a dispersion relation which
allows us to find the longitudinal wave numbers p of modes
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Figure 2. (a) Dispersion curves of modes of a two-cylinder
waveguide (solid lines) and a single-cylinder waveguide
(dashed line) for L = 3a, ωpa/c = 0.19, and ωp/ωH = 6.42
in the absence of collisional loss (νe = 0). (b) Propagation
constants of modes of the two-cylinder waveguide as func-
tions of the distance L for ω/ωH = 1.1.

of the complex waveguide considered. The dispersion re-
lation is then reduced to the equality of the determinant of
such a system to zero. The longitudinal wave numbers are
complex (p = p′− ip′′) due to the presence of collisional
loss. Here, p′ and p′′ are the propagation and damping con-
stants, respectively.

3 Numerical Results

Numerical calculations were performed for the following
dimensionless parameters which can be ensured in labora-
tory experiments in the radio-frequency range [1]: ωpa/c =
0.19 and ωp/ωH = 6.42. We seek modes with the frequen-
cies lying between 1.1ωH and 3.5ωH. Note that in this fre-
quency range, a single-cylinder waveguide is electrically
thin (k0a� 1) and supports the propagation of one sym-
metric mode in the considered interval of the propagation
constants. Thus, this frequency interval is most suited for
a study of the influence of the geometric parameters of the
guiding system on the properties of its modes. The maxi-
mum absolute value of the azimuthal index was limited to
M = 3 in our calculations.

3.1 Two-cylinder waveguide

Consider a waveguide consisting of two loss-free plasma
cylinders (νe = 0), which are located at distance L from

each other (in this case, p = p′). Figure 2(a) shows the
longitudinal wave numbers p as functions of frequency for
the modes of such a waveguide (solid lines) at L = 3a and
the mode of a single-cylinder waveguide (dashed line). It
is seen in this figure that the two-cylinder waveguide sup-
ports the propagation of two modes that have similar de-
pendences p(ω). The behaviour of the dispersion curves of
these modes is close to that of the dispersion curve of the
single-cylinder waveguide. For a two-cylinder waveguide,
the approximate dispersion relation can be obtained in the
following form:

H(2)
0 (k0qL)±

2H(2)
1 (Q)−ηQH(2)

0 (Q)

2J1(Q)−ηQJ0(Q)
= 0, (14)

where Q = k0qa, and the plus and minus signs correspond
to the modes with n = 1 and n = 2, respectively. Hereafter,
the number n is the number of the mode in order of increas-
ing propagation constant. The dispersion curves, which are
found from approximate relation (14), are shown in Fig. 2
by the dash-dot lines.

An increase in the distance between the cylinders leads to
a decrease in the influence of the adjacent cylinder on the
fields of the modes. In the limit L→ ∞, we arrive at the
case of independent single-cylinder waveguides. This fact
can be seen in Fig. 2(b) which shows the dependences of the
propagation constants p on the distance L, which are found
from the rigorous dispersion relation (solid lines) and the
approximate dispersion relation (14) (dash-dot lines). In
this figure, the propagation constants of the modes tend to
the propagation constant of the mode guided by the single
cylinder with increasing L. In the case of an electrically
small distance L, the approximate dependences of q on L
can be obtained from Eq. (14) as follows:

L=Re

{
2

k0q
exp

[
−γ−i

π

2

(
1±

2H(2)
1 (Q)−ηQH(2)

0 (Q)
2J1(Q)−ηQJ0(Q)

)]}
,

(15)
where γ = 0.5772... is Euler’s constant. Formula (15) gives
a good approximation for the behavior of the propagation
constant p as a function of L for the relatively small values
of L in Fig. 2(b).

3.2 Six-cylinder waveguide

We now consider a waveguide consisting of six magnetized
plasma cylinders, which can be realized in experiments [1].
The axes of the cylinders are located on a cylindrical surface
of radius L so that the distance between the axes of the near-
est cylinders is equal to L (see Fig. 1). Figure 3(a) shows
the propagation constants as functions of frequency for the
modes of the considered waveguide (solid color lines) at
L = 3a and the propagation constant for the eigenmode
of the single-cylinder waveguide (dashed line) in the case
νe = 0. The number of modes which are supported by such
a complex waveguide increases compared with the previ-
ous case of a two-cylinder waveguide. Figure 3(b) shows
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Figure 3. The same as in Fig. 2 but for a six-cylinder
waveguide.

the dependences of the quantities p for these modes on L.
These dependences are similar to those for modes of the
two-cylinder waveguide (Fig. 2(b)). Note that the mode
with n = 2 has the nonmonotonic dependence of p on L
in Fig. 3(b).

The propagation constants (p′) and the damping constants
(p′′) as functions of the electron collision frequency are pre-
sented in Fig. 4. These dependences are similar to those of
strongly damped modes of the plasma column, which were
studied in [3] and whose damping rate can be estimated as
p′′/p′ ≈ νe/ω . It is seen in Fig. 4 that allowance for the
relatively small collisional loss does not lead to significant
changes in the propagation constants.

4 Conclusion

In this work, we have analyzed the properties of modes
which are supported by an open waveguide consisting of
several identical gyrotropic cylinders filled with a magneto-
plasma in the rf range. It is shown that such a complex guid-
ing structure supports the greater number of modes than
a single-cylinder waveguide. It is demonstrated that the
modes of the complex waveguide transform to the modes
of a single-cylinder waveguide with increasing distance be-
tween the cylinders in the multi-cylinder structure. It is
shown that for the considered parameters, allowance for
the relatively small collisional loss in the plasma does not
lead to significant changes in the propagation constants of
modes of the complex waveguide.
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Figure 4. (a) Propagation constants and (b) damping con-
stants of modes of a six-cylinder waveguide as functions
of the electron collision frequency νe for ωpa/c = 0.19,
ωp/ωH = 6.42, and ω/ωH = 1.1.
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