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Propagation of TM waves in a shielded plane waveguide with anisotropic Kerr nonlinearity
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Abstract

An eigenvalue problem for Maxwell’s equations with

anisotropic cubic nonlinearity is studied. The problem de-

scribes propagation of transverse magnetic waves in a di-

electric layer with perfectly conducted walls. Layer is filled

with (nonlinear) anisotropic Kerr medium. It is shown that

the anisotropy coefficients differently and crucially influ-

ences the propagation process. It is proved that in some

cases (even for small values of the nonlinearity coeffi-

cients), the nonlinear problem has infinitely many nonper-

turbative solutions, whereas the corresponding linear prob-

lem always has a finite number of solutions.

1 Statement of the problem

Let εx, εz, γ , h be positive and α , β be nonnegative real

parameters. Consider the system of equations
{
−Z′′+ γX ′ = (εz +β X2+αZ2)Z,

−Z′+ γX = γ−1(εx +αX2 +β Z2)X ,
(1)

where X ≡ X(x;γ), Z ≡ Z(x;γ) and x ∈ [0,h].

The problem Q is to find positive numbers γ = γ̂ such that

there exist functions X ≡ X(x; γ̂), Z ≡ Z(x; γ̂) satisfying (1)

and boundary conditions

Z(0; γ̂) = 0, X(0; γ̂) = X0 > 0, (2)

Z(h; γ̂) = 0, (3)

where X0 is a constant. The choice of this constant is de-

scribed below, see section 2.2.

It is also assumed that

X ∈C1[0,h], Z ∈C2[0,h]. (4)

Definition 1 A positive number γ = γ̂ > 0 such that there

exist nontrivial functions X ≡ X(x; γ̂), Z ≡ Z(x; γ̂) satis-

fying (1) and (2)–(4) is called an eigenvalue of the prob-

lem Q; the corresponding functions X(x; γ̂),Z(x; γ̂) are

called eigenfunctions (or eigenmodes) of the problem Q.

Remark 2 If a three-tuple (X ,Z,γ) is a solution to sys-

tem (1), then the three-tuples (−X ,Z,−γ) and (X ,−Z,−γ)
are also solutions to (1); for this reason it is enough to study

the case of positive γ > 0, X0 > 0.

If α = β = 0, one gets the linear problem, which is denoted

by Q0. The eigenvalues of this problem are denoted by γ̃ .

It is easy to check that the problem Q0 has a finite number of

positive eigenvalues γ = γ̃ , where γ̃2 ∈ (0,εx). Indeed, solv-

ing (1) with α = β = 0 and using boundary conditions (2),

(3), one obtains the dispersion equation

sinh

√
ε−1

x εz(εx − γ2) = 0, (5)

which determines the eigenvalues. Solving (5), one gets

γ̃ =
√

εx − εn2,

where ε = εxε−1
z h−2π2 and n = 1,2, . . . until the radicand

is positive.

Problem Q describes the propagation of a monochromatic

TM wave (E,H)e−iωt in a plain waveguide

Σ = {(x,y,z) : 0 6 x 6 h,(y,z) ∈ R
2}

with perfectly conducted walls, where

E =
(
Ex(x),0,Ez(x)

)⊤
eiγz

, H =
(
0,Hy(x),0

)⊤
eiγz (6)

are the complex amplitudes [1], γ is an unknown real spec-

tral parameter, ω is the circular frequency and ( · )⊤ is

the transposition operation. The field (6) is called TM-

polarized [2].

The permittivity ε of the waveguide is described by the

(3× 3)-tensor

ε =




εxx 0 0

0 ∗ 0

0 0 εzz


 , (7)

where

εxx = εx + a|Ex|2 + b|Ez|2, εzz = εz + b|Ex|2 + a|Ez|2,

and εx, εz, a, b are real positivie constants [3]; the entry ∗
does not affect the propagation process.

The fields (6) satisfy Maxwell’s equations

{
rotH =−iωεE,

rotE = iωµH,
(8)

where µ > 0 is the permeability of free space [3].



Substituting fields (6) into equations (8), one finds





iγEx(x)−E′
z(x) = iωµHy(x),

H′
y(x) =−iωεzzEz(x),

iγHy(x) = iωεxxEx(x).

Expressing Hy(x) from the first equation of the latter sys-

tem, differentiating it, and then using the second and third

equations of the system, one arrives at the system (1),

where X := iEx, Z := Ez and εx := ω2µεx, εz := ω2µεz,

α := ω2µa, β := ω2µb.

It is known that tangential components of the electric field

(in our case it is the z-th component) vanish on the perfectly

conducted walls [2]. We assume that the x-th component

of the electric field has a fixed value at the point x = 0.

These physical conditions lead to boundary conditions (2)–

(3). Natural requirement of the smoothness of the field for

x ∈ [0,h] leads to condition (4).

The fields (6) propagate in the layer Σ only for special val-

ues of γ; in electromagnetics this values are called propaga-

tion constants (PCs) [1–3]. From the mathematical stand-

point the PCs are eigenvalues of the problem Q, see defini-

tion 1.

For an open plane waveguide, the problem Q has a long his-

tory. Such a problem, for the first time, was mentioned in

the beginning of 1970’s in [1] for the case of scalar non-

linear permittivity ε = εl + a|E|2 in the layer. From that

time it stayed unsolved in spite of many attempts, see [3–6]

and the bibliography therein. In [5] many special cases are

considered, numerical results are presented in [3, 5, 7, 8].

For the scalar case, an essential advance has been achieved

in [9]. Up to now for an open waveguide, the anisotropic

case remains unsolved.

The permittivity of the form (7) is simplified in different

ways by some researchers. Roughly speaking, it is assumed

that either one of the entries of ε in formula (7) is con-

stant and the other one depends on the field (or one of its

components) [10–12] or both entries depend only on one

component of the electric field [13, 14]. Both approaches

are not correct of course; it is just an opportunity to inte-

grate Maxwell’s equations exactly and then derive the dis-

persion equation (DE) in an explicit form (in both cases,

equations (8) are integrated in elliptic functions). However,

in this case, the DE derived via complicated special func-

tions is not easy to handle.

2 Preperatory results

2.1 First integral

Differentiating the second equation in (1), one finds

−Z′′+ γX ′ = 2
γ (αXX ′+β ZZ′)X + 1

γ

(
εx +αX2 +β Z2

)
X ′.

Using the found relation, system (1) is reduced to the fol-

lowing one





dX

dx
=

2β (εx − γ2 +αX2 +β Z2)

γ(εx + 3αX2 +β Z2)
X2Z+

+
γ(εz +β X2 +αZ2)

εx + 3αX2 +β Z2
Z,

dZ

dx
=− 1

γ

(
εx − γ2 +αX2 +β Z2

)
X .

(9)

System (9) has the first integral, which can be written in

the form

(
εx +αX2 +β Z2

)2
X2+

+ γ2(εxX2 + εzZ
2)− 2γ2

(
εx +αX2 +β Z2

)
X2+

+ 1
2
γ2(αX4 + 2β X2Z2 +αZ4)≡C (10)

where C is a constant.

2.2 Additional condition

Calculating (10) at x = 0 and using (2), one obtains

(εl − γ2 +αX2
0 )

2X2
0 + γ2(εl − γ2)X2

0 +
1
2
αγ2X4

0 =C, (11)

where X0 = X(0).

Let A > 0 be a given constant. The value X0 mentioned in

(2) is determined from the equation

C(X2
0 ) = A, (12)

where C(X2
0 ) is the left-hand side of (11).

Statement 3 Let α > 0 and β > 0, then for any A > 0 and

γ > 0 equation (12) has a unique (positive) solution X2
0 ,

such that for sufficiently big γ it is true that

X2
0 =

3

2α
γ2 +O(1). (13)

Statement 4 Let α = 0 and β > 0, then for any A > 0 and

γ ∈ (0,
√

εx) equation (12) has a unique (positive) solution

X2
0 =

A

εx(εx − γ2)
.

2.3 New variables

Introduce new variables τ̄ and η̄

τ̄ =
εx +αX2 +β Z2

γ2
, η̄ =

τ̄X

Z
, (14)

where τ̄ ≡ τ̄(x;γ), η̄ ≡ η̄(x;γ); in addition, we will use the

notation

ε̄x = εxγ−2
, ε̄z = εzγ

−2
, Ā = Aγ−6

.



Equations (9) take the form

{
dτ̄
dx

=V (τ̄, η̄ ;γ),
dη̄
dx

=W (τ̄, η̄ ;γ),
(15)

where

V (τ̄ , η̄ ;γ)≡ γ
2η̄ τ̄(τ̄−ε̄x)
(αη̄2+β τ̄2)

· αε̄z(αη̄2+β τ̄2)+α(τ̄−ε̄x)(β η̄2+ατ̄2)
τ̄(αη̄2+β τ̄2)+2αη̄2(τ̄−ε̄x)

−

− γ
2η̄ τ̄(τ̄−ε̄x)

(αη̄2+β τ̄2)
· β τ̄(τ̄−1)(αη̄2+β τ̄2)

τ̄(αη̄2+β τ̄2)+2αη̄2(τ̄−ε̄x)
,

W (τ̄ , η̄ ;γ)≡ γ

(
ε̄z τ̄+η̄2(τ̄−1)

)
(αη̄2+β τ̄2)+τ̄(τ̄−ε̄x)(β η̄2+ατ̄2)

τ̄(αη̄2+β τ̄2)
.

Integral (10) takes the form

F̄(τ̄ , η̄ ;γ)≡ ā1η̄4 + 2ā2τ̄2η̄2 + ā3τ̄4 = 0, (16)

where āi ≡ āi(τ̄ ;γ) and

ā1(τ̄;γ)≡ ατ̄(τ̄ − ε̄x)(2τ̄ − 3)+αε̄x(τ̄ − ε̄x)−α2Ā,

ā2(τ̄;γ)≡ β τ̄(τ̄ − ε̄x)(τ̄ − 1)+αε̄z(τ̄ − ε̄x)−αβ Ā,

ā3(τ̄;γ)≡ α(τ̄ − ε̄x)
2 + 2β ε̄z(τ̄ − ε̄x)−β 2Ā.

In spite of the fact that formulas (15)–(16) are derived under

condition α,β > 0, one can check, however, that the cases

α > 0,β = 0 and α = 0,β > 0 are also covered by these

formulas.

Let us define the set Γ, where Γ := (0,+∞) for α > 0,β > 0

and Γ := (0,
√

εx) for α = 0,β > 0.

The following result takes place.

Statement 5 First integral (16) defines a unique function

τ̄ ≡ τ̄(η̄ ;γ), that depends continuously on (η̄ ,γ) ∈ R×Γ

and satisfies the estimate ε̄x < τ̄(η̄ ,γ) < τ̄0, where τ̄0 is

bounded.

3 Main results

Below, eigenvalues of the problem Q will be denoted γ̂ as

well as γ̂i. The notation γ̂i means that the eigenvalues are

ordered in the ascending order.

In addition, we will use the notation

T (γ) :=

+∞∫

−∞

ds

W (τ̄ ,s;γ)
,

where function τ̄ ≡ τ̄(s;γ) is defined by (16) for η̄ = s.

It can be proved that DE of the problem Q has the form

(n+ 1)T(γ) = h, (17)

where n = 0,1, . . . [15].

The following result takes place.

Theorem 6 (of equivalence) For any fixed nonnegative

α,β with α + β > 0 problem Q is equivalent to DE (17)

in the sense that the value γ̂ (> 0) is an eigenvalue of the

problem Q if and only if there is an integer n̂ > 0 such that

γ = γ̂ is a solution to (17) for n = n̂ and γ̂ ∈ Γ.

Relation (17) is a family (but not a system!) of equations

for different n.

Remark 7 DE (17) is valid even for α = β = 0. In this

case γ ∈ (0,
√

εx). In order to get well-defined integrands

in (17), one should set α = β and after this set α = 0. Since

τ̄ becomes ε̄x (constant), then one does not need first inte-

gral (16).

Two corollaries result from theorem 6.

Corollary 8 Let γ = γ̂ be a solution to (17) with n = n̂ and

X(x; γ̂), Z(x; γ̂) be the eigenfunctions, then Z(x; γ̂) has ex-

actly n̂+ 2 (simple) zeroes xi = iT (γ̂), i = 0, n̂+ 1.

Corollary 9 Let γ = γ̂ be a solution to (17) with n= n̂, then

T (γ̂) = h
n̂+1

.

The periodicity result is given by

Theorem 10 If the eigenfunction Z(x; γ̂), where γ̂ is an

eigenvalue, has more than one zero for x ∈ (0,h), then

Z(x; γ̂) and X(x; γ̂) are periodic with the period Θ = 2T (γ̂).

Note: theorem 10 takes place for nonnegative α,β , see also

remark 7.

Properties of the function T (γ) play a crucial role. For this

reason the solvability result is premised on the following

Statement 11 If α > 0,β > 0, then T (γ) is positive and

depends continuously on γ for γ ∈ Γ; for big γ it is true that

T (γ) = δ
lnγ

γ
+O(γ−1),

where δ = 2α− 1
2

(
(3α2 +β 2)

1
2 +β

) 1
2 .

Statement 12 If α = 0,β > 0, then T (γ) is positive and

depends continuously on γ for γ ∈ Γ; in addition

lim
γ→√

εx−0
T (γ) = +∞.

Results of statements 11–12 are main ingredients to prove

solvability of the problem Q. Such results are given by the-

orems 13 and 15.



Theorem 13 If α > 0,β > 0, then the problem Q has in-

finetely many eigenvalues γ̂i with accumulation point at in-

finity. In addition, the following assertions take place:

(i) If there are p eigenvalues γ̃i (i = 1, p) in the problem

Q0, then there exist α0 > 0,β0 > 0 such that for any

positive α = α ′ < α0 and nonnegative β = β ′ 6 β ′
0 it

is true that γ̂i ∈ (0,
√

εx) and

lim
α ′→+0

lim
β ′→+0

γ̂i = lim
β ′→+0

lim
α ′→+0

γ̂i = γ̃i (i = 1, p),

where γ̂1 < .. . < γ̂p are first p solutions to the problem

Q with α = α ′
,β = β ′;

(ii) If X ≡ X(x; γ̂i) and Z ≡ Z(x; γ̂i) are eigenfunctions for

a particular γ̂i, then

max
x∈[0,h]

X2 = 3
2α γ̂2

i +O(1), max
x∈[0,h]

Z2 = 1
α+β

γ̂2
i +O(1)

as γ̂i → ∞.

Note: if β = 0, then limβ ′→+0 is dropped.

Corollary 14 Infinitely many eigenvalues γ̂i of the problem

Q for α > 0, β > 0 do not have linear counterparts.

Theorem 15 If α = 0, β > 0, then the problem Q has a

finite number (possibly no one) of eigenvalues γ̂i ∈ Γ. In

addition, if there are p eigenvalues γ̃1 < γ̃2 < .. . < γ̃p in

the problem Q0, then there exists β0 > 0 such that for any

positive β = β ′ < β0 and α = 0 the problem Q has at least

p eigenvalues γ̂i and it is true that

γ̂i ∈ (0,
√

εx) and lim
β ′→+0

γ̂i = γ̃i, i = 1, p,

where γ̂1, . . . , γ̂p are first p solutions to the problem Q with

α = 0, β = β ′.
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