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Multifrequency electromagnetic wave propagation in a dielectric slab with Kerr nonlinearity:
perturbative and nonperturbative guided waves
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Abstract

The paper focuses on a particular problem of nonlinear mul-
tifrequency electromagnetic wave propagation that is called
problem P. The problem P describes propagation of a finite
sum of n monochromatic TE waves guide by a dielectric
layer having infinitely conducted walls. The permittivity
of the dielectric is described by the Kerr law. The mul-
tifrequency guided wave is thus characterised by n differ-
ent frequencies and n propagation constants. The physical
problem is reduced to a nonlinear multiparameter eigen-
value problem. It is shown that there are nonlinear guided
waves with and without linear counterparts.

1 General statement of the problem

Let £ = {(x,y,z) € R®: 0 < x < h,(y,z) € R?} be a layer
placed in R? and filled with nonlinear dielectric. The per-
mittivity € of the dielectric will be described below; the
permeability  of the dielectric is a positive constant. The
layer has infinitely conducting walls at x = 0 and x = A.

In accordance with [1], introduce the multifrequency field

n n
Eo=)Y Eje', Hy=) Hje ', (1)
j=1 j=1

where E; = E[ +/E; and H; = H; +iH; are the com-
plex amplitudes [2]. The real (physical) field E, Hy, has
the form Eq (x,y,z,1) = ReEy, Hyp(x,y,2,1) = ReHy,. Fre-
quencies w; are different but there can be restrictions re-
lated to a particular nonlinear law chosen for € [1, 3, 4].

We assume that the permittivity € is a diagonal (3 x 3)-
tensor that depends on the field by the Kerr law, that is,

B &+ fx 0 0
e(Ep) = 0 &+ fy 0 , )
0 0 &+ fx

where &,, €, € are real positive constants and
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here 3, ,, are real constants, (-, ) is the euclidian scalar
product, e, is a unit vector in r-direction, r,r| € {x,y,z}.

The permittivity in the form (2) is not as general as possi-
ble of course.Nevertheless, such a permittivity is in agree-
ment with some real situations [2, 4—13] and is sufficient to
study various types of waves, for example, TE, TM, and, so
called, coupled TE-TE and TE-TM waves in the Kerr case.

Well, substituting fields (1) into Maxwell’s equations, one
derives that the complex amplitudes E;, H;, satisfy the fol-
lowing (coupled) equations

n . n .
rot Y Hie ' = —ie '} w;Eje '/,
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The operator rot is linear and thus the latter gives

n n
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Since the derived system must be fulfilled for all #, then one
arrives at the following system of n (coupled) systems

rotH; = —iew,E;, 3)
rotE; =iuw;H;, where j =1,n.

Thus the complex amplitudes E;, H; satisfy equations (3),
tangential components of the electric fields E; vanish at the
interfaces x = 0, x = h. An additional condition is also
needed; for example, one can fix value of the field at one
of the boundaries, see second formulas in (7) and (10).

2 Multifrequency guided waves of TE type

Let us consider a particular configuration of the filed (1)
that results in the problem studied in sections 3-4. Let an
integer index j’ be such that 1 < j/ < n. We consider the
fields E;, H; to be of the form

E; = (0, e)(,j),O)T iz, H, = (h)(c >,O h( ))T iz,

) G @)
E (0 0 e( ))T WJ) Hj — (hj(cj)’h;/)’o)—rezyjy
< n in the former and letter lines

of (4), respectlvely, here components e)(, ), egj ), h)(cj ), hy ),

for1 <j<j andj <



hgj ) depend on spatial variable x only (of course, these
quantities, as solutions to Maxwell’s equations, also de-
pend on other parameters of the problem) and y; are un-
known real constants. In other words, we consider a sum of
transverse-electric fields propagating in directions Oz and
Oy, respectively.

Substituting fields (4) into equations (3), taking into ac-
count (2), and using the notation u; := e)(,j ) for j=1,j and
uj = egj ) for j = j',n, after some algebra one arrives at the
following system

u/{ = —(8111 —uwlzylz)ul — (ﬁmu%—l— . ..—|—B1,nui)u1,

Wi = — (&1, — pepyp)up — (Bt + ...+ Braty)uy
2
W =—(&2, 711 —ﬂ“’j’+1yjz'+1)”j’+1_

— ([327114%4— . ..—|—ﬁ21nu%)uj/+1,

U, = — (&0 — .uwr%%%)”n - ([32,1”% +...+ ﬁZ,nug)”nv

&)
where &1 ; = gyuw; for j=1,), & ;= guwj; for j = j',n,
Prj = najpyjy for j = 1.7 pr; = najpey for j =
J+Ln Bi= “wjzﬁ%jl forj=1,j, B = “w}ﬁZJ,Z for
j=7 ¥ Tn.

Tangential electric field components vanish at perfectly

conducting walls [14]. In this case eﬁj ) and egj ) are tan-

gential components. Thus u],—o = uj|—, = 0 for j =1,n.
We also fix values of “// at the boundary x = 0. The con-
ditions listed in this section result in conditions (7), (8) if
n > 2 and conditions (10), (11)if n=1.

Field (4) propagates in X only for special values of ;.
These values are called propagation constants (PCs). Thus,
the main problem is to determine PCs. From the mathemat-
ical standpoint, the above formulated problem is a nonlin-
ear multiparameter eigenvalue problem for system (5) with
the above listed boundary conditions. The eigentuples (or
eigenvalues in the one-parameter case) are PCs.

Nonlinear laws that are used in the waveguiding nonlin-
ear optics have small factors; these factors can be consid-
ered as small parameters (this is true for the Kerr nonlin-
earity) [3, 4, 15]. This allows one to apply a perturbation
method based on linear problems and prove existence of so-
lutions to the nonlinear problem that are close to solutions
of the used linear ones (see, for example, [16, 17]).

In linear eigenvalue problems eigenfunctions are deter-
mined up to a constant factor; the eigenvalues are uniquely
determined [18]. For nonlinear eigenvalue problems (when
equations depend nonlinearly on the searched for func-
tions), the same boundary conditions are not enough.

As is known, linear electromagnetic wave propagation
problems in a plane layer have discrete sets of PCs (see,

for example, [14, 19]). If one generalises a linear problem
to the nonlinear situation, then it is natural to formulate the
nonlinear problem in such a way that solutions to the non-
linear problem have linear counterparts at least for ’small’
nonlinearities. Thus, the necessity of an additional condi-
tions is clear.

As an additional condition, one can fix (or prescribe) value
of the field components (or their derivatives) at one of the
boundaries, for example at x = 0. Fixing norms (in an ap-
propriate function space) of e§/ ) and egj ), one gets another
variant of the additional condition. We should stress how-
ever that in an open waveguide, a natural additional condi-
tion is the former one; moreover, the latter condition is not
suitable from the physical point of view, see also [1].

3 Nonlinear eigenvalue problems

Below integer indexes i, j vary from 1 to n > 2 and often
we do not indicate this explicitly.

We introduce 2n positive constants a;, b; and n? nonnegative
constants ¢ as well as n real parameters A;. In addition, we
consider n-tuple A and (n x n)-tuples &, o, and 0.

The tuple A consists of n parameters A; and can be consid-
ered as an n-dimensional vector A = (4,...,4,). The tuple
« consists of n? parameters @;; and can be considered as a
(n x n)-matrix. The tuple &’ consists of n> parameters o,
where ¢; > 0 and «;; for i # j are zeros; the tuple 0 can be
considered as a zero (n X n)-matrix.

We define sets A; = [0,A4;), where A;" are positive suffi-
ciently big constants. The choice of A* will be clear from
theorems 3 and 4. It is assumed that o;; € A;;, where
A;j = (0,04;). In this notation ;; are arbitrary but fixed
positive constants and o for i # j are positive constants
that depend on o and A;". The parameters o for i # j, in
general, are sufficiently small, see theorem 4.

Below we use the notation [];C; as well as C; x ... x C;
to define a (finite) Cartesian product of sets C;. We define
the following Cartesian products A = [[; A;, A =T[; j Ajj.
The notation A € A and @ € A mean that A; € A; and ¢;; €
Ajj, respectively. We denote the interval (0, /) and segment
[0, /] by I and I, respectively.

Now let us consider the system of n coupled equations

I/lll/ =—(a; — A )u; — ((X[]M%—F...—I—(X[nuﬁ)ul,

;: = —(an — An)un — ((anu%—l— et a""uﬁ)u"’

u
where the prime marks denote differentiation with respect
to x; here it is assumed that (x,A, o) € Ix R" x A. Solutions
to system (6) are denoted by u;, u;(x), or u;(x; A, @).



The problem P = P(a) consists in finding n-tuples A
for which there exist solutions u; = u; (x4, Q),...,u, =
un(x; A, o) to system (6) that satisfy boundary conditions

ui(0;4, ) =0, uj(0;4,a)=b;, 7
ui(h;A,00) =0, (8)

and such that uy,...,u, € C*().

The correspondence between equations (5) and (6) is clear.
In fact, system (6) is more general than (5).

If a — o, that is, &; — +0 for i # j, then the prob-
lem P(a) degenerates into the problem P(o). As is seen
from system (6) and formulas (7)—(8), the problem P(c')
consists of n independent nonlinear problems. These prob-
lems are denoted by P,.

In order to formulate the problems P; rigorously let us con-
sider the equation

v = —(ai— Ai)vi — oy, ©))

where the prime marks denote differentiation with respect
to x; here it is assumed that (x,A;,0;) e IxXRx R, R, =
(0,+-o0). Solutions to equation (9) are denoted by v;, v;(x),
or V,’(x; 7L,', OC,‘,').

Every problem P; consists in finding values A; for which
there exist solutions v; = v;(x; A;) to equation (9) that satisfy
boundary conditions

vi(0;4i, a6) =0, vi(0;4;, 04) = by, (10)
vi(h; Ai, i) =0, (11

and such that v; € C2(T).

Since ¥; in (4) are real, then /.t(ujzyjz are positive and for
this reason electromagnetic applications require only posi-
tive A; in the problems P(«x) and P;. If n = 1 and, therefore,
j'=0o0r j' = 1, then one comes to one of the problems P;. If
all B j and B, ; are zeros, then one arrives at n linear prob-
lems that arise when one needs to determine linear guided
TE waves propagating in the layer ¥ with linear permittiv-
ity. These linear problems are equivalent to the problems PJQ
formulated in section 3.

4 Results

Below we use additional notation for the eigentuples and
eigenvalues. Eigentuples A of the problem P(¢r) will be
denoted by ikl...k,, = (ZLkl N ,Z,,J(n), where ki, ... ,k, are
nonnegative integer indexes. Eigen\Lalues Ai of the prob-
lems P; and P will be denoted by Aig and A; . respec-
tively, where k! are nonnegative integer indexes. It is as-
sumed that eigenvalues 1,»7,((, A; o are arranged in the de-
scending and ascending. l [

Since the problems Pi0 are easily solved, then we immedi-
ately start with the following fact.

Statement 1 For any h > hyj, = \/—% > 0 the problem P?
has a finite number (not less than 1) of simple (positive)
eigenvalues 0 < A1 < ... < Ay < a;; if a; = 0, then the

problem PiO does not have positive solutions.

Let us consider the problem P,. We consider functions 6; =
V2, Wi = vi/vi, where v; = v;(x; A;, @;) is a solution to the
Cauchy problem for equation (9) with initial data (10). By
virtue of (9), functions 6;(x) and p;(x) satisfy the following

system

0] =20;u;

AR (12)
W = —(u7 +a; — A+ @;;6;).

Taking into account (10), the first integral of system (12)

has the form

30307 + (U7 +a;— A;)6; = b. (13)

o0
Let T;(A;) = _{o m, where 6;(s) is defined

from (13) with y; = s.

Using the IDEM, we obtain

Statement 2 (of equivalence) The value 1; is a solution to
the problem P; if and only if there exists an integer m; =

m; = 0 such that A; = A; is a solution to the DE
(mi+ 1)Ti(Ai) = h (14)

for ml = my; the corresponding eigenfunction v; =
vi(x; Ai, 06i) has m; (simple) zeros x., € 1, where x., =

~

rT:(A) = e — 1 .

mi+1°
Analyzing dispersion equation (14), we get

Theorem 3 There exist an integer m, > 0 such that for ev-
ery integer m > m|, equation (14) has at least one (positive)
solution /1- = i,m with ii’m — 400 as m — +oo and, there-
fore, the problem P; has infinitely many (positive) eigenval-
ues ilm with an accumulation point at infinity. Further-
more,

1) there is a constant /'Li’ > a; such that all eigenvalues
Aim € [0,a;) U (A],+oo) are simple eigenvlaues;

N 2) if the~pr0blem PI.0 has p (positive) solutions Aig <
it <...<Ajp_1, then there exists a constant ¢/, > 0 such
that for any (positive) o; = of; < ol it is true that

~

Aim €[0,a;) and Tim Ay = Aipfor m=0,p—1,

%;—+0

where A;,...,Aip—1 are first p solutions to the problem P;
with o = otl;



3) if m > p, then Ai,, has no linear counterpart and

1im0€,‘,‘—)+0 )*i,m = oo

~ 12
4) maxe (o) |vi(x; Aim, )| = O(Sm/ ) as m — oo,

where Sy = Ai m.

Using problems P; as nonperturbed and applying the IDEM,
we obtain the main result of this paper.

Theoreln 4 Let every problem P, have m; simple eigen-
values Ai1,...,Aim; € [0,a;) U (A, A") C A, respectively.
Then there exist positive constants Ocij- fori+ j such that for
any 0 < 04 < o; (i # j) the problem P(e) has at least my x
. Xmy eigentuples Ay gk = (Mis Ay s Anky)s

M ko k, belongsto a

T~

where ki = 1,my;; furthermore, every lkl,kz

neighbourhood of the point (A ks Az jeys- -, Any)-

Since values A" in A; can be chosen as big as necessary,
then theorem 4 states existence of eigentuples of the prob-
lem P(a) that, in particular, belong to the domain where
there are no solutions to the problems P?. This result pre-
dicts existence of a novel type of nonlinear guided waves.
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