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Abstract

The nonlinear propagation of ion-acoustic shock waves has

been investigated in an unmagnetized ion-beam plasma

with electrons featuring non-Maxwellian hybrid distribu-

tion. The reductive perturbation method has been employed

to derive the Korteweg-de Vries Burgers (KdVB) equation

and by employing the tangent hyperbolic method, the trav-

elling wave solution has been acquired. It is observed that

the superthermality of electrons, number density and tem-

perature of positive ion beam, kinematic viscosity etc. cru-

cially modify the propagation properties of IA shock struc-

tures. The findings of the present study may be useful in un-

derstanding the insight into the physics of nonlinear struc-

tures in the polar cap region.

1 Introduction

A number of investigations have been reported on the study

of nonlinear propagation of ion acoustic (IA) waves in mag-

netized as well as unmagnetized plasmas under different

physical situations in different kinds of laboratory, space

and astrophysical environments. There is the existence of

solitary waves in a nonlinear dispersive media due to the

balance between the dispersion and nonlinearity. However,

a medium supports the existence of shock waves which pos-

sesses dispersive and significant dissipative properties, The

study of shock wave propagation plays a prominent role in

order to understand the underlying physics of acceleration

of charged particles in various laboratory and astrophysi-

cal phenomena. Vladimirov and Yu [1] derived the KdVB

equation to study the ion acoustic shock waves in collisional

plasma, where nonlinear effects originates from thermal

forces and inter-particles heat exchange. It was highlighted

that the derived KdVB equation cannot be transformed to

KdV equation due to fixed normalization. Sahu and Roy-

choudhury [2] derived the non-planar KdVB equation to

determine the characteristics of ion acoustic shock waves

in collisional plasma, having non-isothermal electrons, and

found that in the limits of small of values of time coordinate

τ the considered plasma is conducive for the propagation of

KdV soliton as well as Burger shock.

The presence of energetic charged particles e.g., ion, elec-

tron or positron beam in any given plasma system sig-

nificantly modifies the characteristics of various nonlin-

ear structures. Shah et al. [3] investigated the effect of

positron beam on the propagation characteristics of ion-

acoustic shock waves. It was found that both the amplitude

and steepness of the ion-acoustic shock waves increases

with the enhancement in the spectral index of the superther-

mal electrons, and concentration of positron beam. Kaur et

al. [4] investigated the characteristics of ion acoustic Gard-

ner solitons in an unmagnetized plasma composed of a posi-

tive warm ion fluid, two temperature superthermal electrons

embedded by a positive ion beam. It was found that the

different physical parameters have profound effect on the

various characteristics of nonlinear electrostatic excitations.

The omnipresence of non-Maxwellian distributed particles

suprathermal tails has been confirmed by various satellite

missions in many space end astrophysical plasma environ-

ments. The non-Maxwellian hybrid distribution involving

two commonly adopted distribution functions for describ-

ing the plasmas are the kappa distribution, characterized

by the κ parameter and the Cairns distribution, character-

ized by the nonthermal parameter α [5, 6]. During the last

few years, some studies with non-Maxwellian hybrid dis-

tribution have been reported [7, 8]. Singh et al. [8] studied

head-on collision among dust acoustic (DA) multi-solitons

in a dusty plasma with ions featuring non-Maxwellian hy-

brid distribution under the effect of the polarization force.

It was found that the presence of the non-Maxwellian ions

leads to the significant modification in polarization force.

To the best of our knowledge, the study of IA shock waves

in an unmagnetized plasma comprising of electrons fol-

lowing non-Maxwellian hybrid distribution penetrated by a

positive ion beam (He+ beam) has not been reported so far.

Motivated by the observations of DE-1 satellite, which has

shown the existence of ion beam and its penetration into

different plasma environments, it is imperative to investi-

gate the influence of density, temperature and velocity of

ion beam, superthermality of electrons, and kinematic vis-

cosity on the characteristics of IA shock waves. The layout

of manuscript is organised as: In section 2, the fluid equa-

tions are illustrated. The derivation of KdVB equation is

presented in section 3. The numerical analysis is discussed

in section 4. Conclusions are highlighted in section 5.

2 Fluid equations

A collisionless, unmagnetized plasma consisting of posi-

tive ion fluid, positive ion beam and electrons obeying non-

Maxwellian hybrid-distribution is considered to study the



characteristics of IA shock waves. The number density of

electrons is given as [8]

ne = ne0(1+h1(e/kBTe)φ +h2(e/kBTe)
2φ 2) (1)

where

h1 =

{

1−Λ, Cairns distribution.
κe−1/2

κe−3/2
, Kappa distribution.

(2)

h2 =

{

1/2, Cairns distribution.
κ2

e −1/4

(κe−3/2)2 , Kappa distribution.
(3)

Here, ∆ = 4α/(1+ 3α) and α is a parameter that deter-

mines the nonthermal effects in phase space of Cairns dis-

tribution. At equilibrium, the charge neutrality condition is

given by µe = 1+ µb, where µe =
ne0
ni0

and µb = nb0
ni0

. The

dynamics of IA shock waves are characterized by the fol-

lowing set of fluid equations in normalized form
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∂ t
+
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∂x
= 0, (4)
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∂x
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∂ 2φ

∂x2
= (1−ni)+(1−nb)µb +µe(h1φ +h2φ2) (8)

α1 =
mi
mb

is the ratio of the masses of the positive ions to the

ion beam, n j ( j = i and b) indicates the number density of

positive ions and ion beam, normalized by their equilibrium

values n j0. Also, we have included σi =
Ti
Te

and σb = Tb
Te

where Te, Ti and Tb are the temperatures of electrons, ions,

and ion beam, respectively. The ion fluid speed ui and ion

beam speed ub are normalized by the ion sound speed Ci =
(KBTe/mi)

1/2, the electrostatic potential φ by KBTe/e, the

space (x) and time (t) coordinates are normalized by Debye

length, λDi = (KBTe/4πni0e2)1/2 and the inverse of plasma

frequency, ω−1
pi = (mi/4πni0e2)1/2, respectively.

3 Derivation of KdVB equation

The stretching coordinates used to derive the KdV Burgers

equation are ξ = ε1/2(x−vpht), and τ = ε3/2t, where ε
is a small parameter (0 < ε < 1) measuring the weakness of

the dispersion, and vph is the phase velocity. The expansion

of dependent variables is described as
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Using the stretching coordinates and expansion of depen-

dent variables in Eqs. (4)-(8), evolution equations are de-

termined after equating the coefficients of different powers

of ε . On comparing the coefficients of terms with lowest

power of ε , we get the following first order evolution equa-

tions:

ui1 =
vph

(v2
ph −3σi)

φ1,ni1 =
1

(v2
ph −3σi)

φ1, (10)

ub1 =
α1(vph −ub0)

(vph −ub0)2 −3σbα1
φ1, (11)

and

nb1 =
α1

(vph −ub0)2 −3σbα1
φ1. (12)

Using Eqs. (10) and (12) in Eq. (8), we get the following

linear dispersion relation for IASWs

1

(v2
ph −3σi)

+
α1µb

(vph −ub0)2 −3σbα1
−µeh1 = 0 (13)

which is a quadratic in v2
ph showing that four distinct modes

can propagate in the given plasma system corresponding to

the four different roots obtained from Eq. (13) provided

that vph 6= 3σi and vph 6= ub0. In this present investigation,

we are considering only one root corresponding to which

IA shock structures have been studied. The next order of ε
yields the following second order evolution equations,
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and
∂ 2φ1

∂ξ 2
= µe(h1φ2 +h2φ 2

1 )−ni2 −nb2µb. (18)

Eliminating the second order quantities from Eqs. (14)-(18)

and making the use of first order Eqs. (10)-(12), we obtain

the following nonlinear KdVB equation

∂φ

∂τ
+Aφ

∂φ

∂ξ
+B

∂ 3φ

∂ξ 3
−C

∂ 2φ

∂ξ 2
= 0, (19)



here φ1 ≡ φ for mathematical simplicity and the nonlinear

coefficient A, dispersion coefficient B and dissipation coef-

ficient C are given as A = γ1B, B = 1
γ2

and C = γ3B with

γ1 =
3α2

1 µb(vph −ub0)
2 +3σbα3

1 µb

((vph −ub0)2 −3σbα1)3
+

3(v2
ph +σi)

(v2
ph −3σi)3

+2µeh2,

(20)

γ2 =
2α1µb(vph −ub0)

(vph −ub0)2 −3σbα1
+

2vph

(v2
ph −3σi)2

, (21)

and

γ3 =
ηi0

(v2
p −3σi)2

. (22)

By employing the tanh method and using the transforma-

tion ξ = k(x−uτ), where k is the wave number and u is the

velocity of the frame of reference, the shock wave solution

in terms of independent variable ξ , can be expressed as

φ =
12B

A

(

1− tanh2(ξ )
)

−
36C

15A
tanh(ξ ) (23)

4 Numerical analysis

The dynamics of ion acoustic shock waves and their char-

acteristics variation with the various plasma parameters are

investigated numerically in this section. We have observed

that the beam parameters (such as number density, tem-

perature and beam velocity), kinematic viscosity of ions as

well as the concentration of non-Maxwellian electrons ex-

hibit significant variations in the shock wave amplitude and

steepness in the considered plasma system. The numerical

analysis has been carried out with the data obtained from

DE-1 satellite observations in the polar cap region where

the presence of warm He+ beam was detected [9]. The non-

linear, dissipation and dispersion coefficients are strongly

dependent on the various plasma parameters, due to which

change in any of the parameter causes a significant change

in the given coefficients, which further modify the charac-

teristics of IA shock waves.

Fig 1 depicts the variation in the amplitude of the shock

wave profile for different values of concentration of posi-

tive ion beam (via µb) with the fixed values of nonthermal

parameter α and spectral index κe. It is obvious that the

increase in the ion beam concentration causes a vital rein-

forcement of shock wave by strengthening it in the system

and hence both the amplitude and steepness of the shock

waves increases with increase in the value of µb. Fig. 2 ex-

plores the effect of ion kinematic viscosity (via ηi0) on the

3D profile of the IA shock waves. If the dissipative coef-

ficient C is negligible, in comparison with the nonlinear A

and dispersive B coefficients, the solitary structure will be

established by balancing the effects of dispersion and non-

linearity. On the other hand, if the coupling becomes very

strong, then the shock waves will appear and same effect is

depicted in Fig. 2. The amplitude of the IA shock waves

rises with the increasing value of the kinematic viscosity
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Figure 1. Variation of IA shock wave profile φ vs. ξ for

different values of µb (a) cairns distribution, (b) kappa dis-

tribution with µe = 0.1, σb = 0.3, σi = 0.1, α1 = 0.25,

ub = 0.85, ηi0 = 0.4.

for ions. As the value of the kinematic viscosity approaches

to zero, we get the profile of IA solitary waves (figure not

shown).

The variation of shock wave profile with the nonthermal pa-

rameter α is depicted in Fig. 3. The amplitude of the shock

wave decreases with the rise in the value of nonthermal pa-

rameter (via α). It can be concluded that the addition of the

nonthermal electrons opposes the propagation of the high

amplitude shock waves in the given plasma system. The

variation of the shock wave profile with the varying value

of ion beam velocity (via ub0) is depicted in Fig. 4. It is

noted that the amplitude of the shock structures are sensi-

tive to the ion beam velocity only in a very small range and

Figure 2. Variation of 3D shock wave profile for kinematic

viscosity ηi0 with spectral index κe = 3.5 and other param-

eters same as shown in the caption of Fig. 1.



Figure 3. Variation of 3D shock wave profile for nonther-

mal parameter α with other parameters same as shown in

the caption of Fig. 1.

Figure 4. Variation of 3D shock wave profile for ion beam

velocity ub0 with other parameters same as shown in the

caption of Fig. 1.

increases with the increasing value of ub0.

5 Conclusions

The propagation characteristics of ion acoustic shock waves

are investigated in an unmagnetized plasma consisting of

positive ion fluid and non-Maxwellian distributed electrons

penetrated by positive ion beam. The KdVB equation has

been derived by using the reductive perturbation technique.

The impact of various plasma parameters (such as ion beam

concentration (via µb), superthermality of electrons (via

κe), nonthermal parameter (via α), ion kinematic viscosity

(via ηi0), ion beam temperature (via σb) etc.) on the charac-

teristics of IA shock waves has been analyzed numerically.

Both polarity shock structures are formed. It is found that

the with increase in the concentration of number density of

ion beam, there is rise in the amplitude of shock waves for

the fixed value of spectral index κe and nonthermal param-

eter α . Also, the amplitude of the shock wave profile in-

creases with the rising value of ion kinematic viscosity ηi0.

The findings of present investigation may be helpful in un-

derstanding the nonlinear structures in the polar cap region

where plasma contains nonthermal electrons, and beam of

positive ions (e.g., He+, O+) and other space/astrophysical

environments.
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