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Abstract 
 
Dispersion of propagation constants of Surface Plasmon 
Polariton (SPP) modes at a metal-dielectric interface with 
the thickness of buffer layer in both the Otto and the 
Kretschmann-Raether configurations has been modeled 
using Method of Lines (MOL). The results reaffirm that 
in either configurations, the excited mode may not have 
the desired surface plasmon characteristics if the buffer-
layer thickness is too small. 
 
1. Introduction 
 
Surface Plasmon Polariton (SPP) modes that exist at a 
metal-dielectric (M-D) interface at visible and IR 
wavelengths have become a subject of vigorous 
investigation for the wide range of their prospective 
applications in photonic integrated circuits and 
biosensors. Such an interface, which supports only one 
TM type Surface Electromagnetic Wave (SEW), is the 
basic guiding structure for SPP. Excitation of SPP 
constitutes an important segment in the plasmonic 
research as SPP is not excited by impinging free 
electromagnetic waves [1]. Two notable excitation 
schemes for single M-D interface are the Otto [2] and 
Kretschmann-Raether (K-R) [3] configurations. Both 
utilize total internal reflection (TIR) at the base of a prism 
to generate an evanescent field. While the former uses a 
thin air-gap, the latter uses a thin metal film as the buffer 
layer. The basic excitation scheme of Otto and K-R 
configuration are shown in Fig. 1 and Fig. 2 respectively. 

In Otto configuration, when  > c   (= ,/sin 21
1   

where 1 and 2 are the dielectric constants of the buffer 
and the prism, respectively), the total internal reflection at 
the prism base produces an evanescent tail into the buffer 
layer. Excitation of SPP mode is only possible if the real 
part of the plasmonic  at the metal – buffer layer 

interface is equal to  sin20k  where
0k is free space 

wave number. The well known expression for surface 

plasmon   is 
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1  , for an interface between 

a dielectric  1 half space and a metal  M  half space. 

As such it cannot be applied readily to a practical 

configuration as in Fig.1. The precise computation of   

for a finite buffer layer thickness and its dispersion with 
the layer thickness are important for studying the prism 
excitation of SPP. In this paper we model the waveguide 
configuration in Fig. 1 as a three-layer structure as shown 
in Fig. 3(a) and study the dispersion of the plasmonic   

and evolution of SPP modes with the thickness of the 
buffer layer using MOL modeling scheme. A similar 
study for K-R configuration (Fig. 2) is also carried out 
using a three-layer model shown in Fig. 3(b). MOL is a 
highly suitable computational tool for planar geometries. 
It has been used by Jamid [4] for SP modes on M-D 
interface. Berini, among others, has extensively applied it 
in the theoretical study of various plasmonic guides [5]. 

 
 
 
 
 
 
 
 

Figure1. SPP excitation in Otto configuration 

 
Figure2. SPP excitation in K-R configuration 
 
2. Formulation of the problem 
 
The three layer structures in Fig.3(a) and (b) can be 
considered as representative models of the excitation 
schemes shown in Fig.1 and Fig. 2, respectively, where 
the prism is replaced by the bulk dielectric having 

permittivity 2  filling the half space above the buffer 

layer of finite thickness 1b . In the computation, the shape 

of the prism is not important as the physical phenomenon 
involved in SPP excitation is TIR at the prism base. In 
case of Otto configuration the buffer layer is a dielectric 

having permittivity 1 whereas for K-R configuration it is 



a metal of permittivity .M The dispersion equations of 

these three-layer structures  involve complex terms 

because of complex nature of M and the solutions for   

are also complex numbers. Handling such transcendental 
equations for locating complex roots is usually not 
straightforward. Generally, the presence of singularity in 
the equations of multilayer structures and existence of 
trivial solutions for the equations further complicate the 
problem. It is also observed that different forms of the 
dispersion equation resulting from the choice of forms of 
the trial solutions (exponential, trigonometric or 
hyperbolic) at different layers, do not always produce 
results in the entire range of computation. The semi-
analytical MOL technique can overcome these difficulties 
of mode computation. 

 
(a)                                      (b) 

Figure 3. Three-layer modelling of excitation schemes in 
(a) Fig. 1 and (b) Fig. 2. 
 

2.1. Outline of the formulation using MOL 

The non-zero field components of the TM type SPP mode 
in the three-layer structures in Figs. 3(a) and (b) are 

 ZYX EHE ,, and the guiding equation is: 
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In MOL computation we start with ),( zx = YH  and 

then proceed with discretizing the equation (1) along X-
axis on a set of parallel lines perpendicular to the X-axis 

with interval x [5]. The parallel lines need not be 
equidistant and are generally referred as computation 
gridlines. Incorporating the interface conditions to take 
care of the boundary conditions at the layer to layer index 
discontinuities and using 3-point central difference 

approximation for the term
2

2 ),(

x

zxi


   on each gridline i, 

we finally arrive at a set of equations that can be 

expressed in matrix form: 02
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where Q


 is an M X M square matrix, M is the total 

number of gridlines in the geometrical domain of 

computation and 


 is the column vector containing the 

discretized field values on the gridlines. The M x M 

matrix Q


 is expressed as: NkC
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Q
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Where C


is a tri-diagonal central-difference matrix with 

interface conditions incorporated therein [4] and N


is a 
diagonal matrix containing the discretized values of 

)(x on the gridlines. For particular modal solution of 

the problem, the z-dependence of 


 can be expressed as 

)zjexp(  ,   being the propagation constant for the 

mode. Therefore equation (2) can be further written as: 

       


2Q                           (4) 
Equation (4) can be solved for the eigen values and the 
corresponding eigenvectors. The square root of the 
eigenvalue of the square matrix Q


gives the propagation 

constant and the eigenvector corresponds to the associated 
discretized  field pattern on the gridlines.  

2.2. Use of perfectly matched layer absorbing 
boundary condition to restrict the size of 
computation domain 
 
The problem space under consideration is extended from 

x  to x and therefore the computation 
domain needs to be restricted to a finite size. Since we 

have started with yH  field, the most appropriate 

termination of the computation window would be to place 
magnetic walls (MW) at some grid lines on both -ve and 

+ve X-axis within the Dielectric  2  and Metal  M  

respectively for Otto configuration. Since we are 

interested in SPP modes, the yH  field within the metal 

quickly dies down and therefore a MW at a suitably 
located grid line in the metal can be safely placed to 
restrict the domain of computation along +ve X-axis. The 
situation is not that simple along -ve X-axis. The field 

pattern in Dielectric  2  can have a general characteristic 

of free propagating wave with no confinement or decay 
along the -ve X-direction. Therefore placement of a MW 
on a gridline may generally produce backward reflection 
resulting in error in computation. To address this issue we 
have terminated the computation window along -ve X-
axis by placing a finite width perfectly matched layer 
(PML) having absorbing boundary conditions (ABC) [6]. 
The computation widow for Otto configuration using 
PML and MW is shown in Fig. 4.There is no material 

discontinuity between the PML and the Dielectric ( 2 ). 

However the formulation enforces the wave to travel 
through a complex distance within the PML by a method 

of co-ordinate transformation ,xjxx   ( )0
which causes attenuation of the field inside the PML so 

that at a suitable grid line X= 321 bbb  , a MW can 

be safely placed. The criteria for deciding the width of the 
PML, the number of gridlines within the PML and the 
value of   have been discussed in detail in [6] and the 



same is applied in the present work. The computation 
widow for K-R configuration is shown in Fig. 5. As in 
Otto configuration, in this case also we have not 
considered any PML termination for bottom most layer in 
the computation widow and an adequate layer thickness 
would be enough for computing correct eigenvalues for 
the desired surface plasmon modes. 

Figure 4. Computation window using PML and MW in 
Otto configuration. 

Figure 5. Computation window using PML and MW in  
K-R configuration. 
 
3. Results and discussion 
 
The numerical modeling using MOL with PML ABC 
involves (i) proper choice of discretization scheme of the 
problem space, (ii) selection of parameters for the PML 
and (iii) proper identification of the surface plasmon 
modes from a large set of computed eigenvectors. The 
model is validated with published results [7] for modified 
Otto configuration with multilayered buffer dielectric, 
computed from approximate reflectivity formula. The 

effective index  effN  of the SPP mode in such a 

configuration is defined as effN =
0k


, which is a 

complex number. The value of effective index for an 

isolated Dielectric  1 -Metal  M  interface for the 

chosen parameters is .0026.09553.2 j  The computed 

  is related to the angle of incidence   by the relation: 

Real part of  =  sink 20alRe  . To excite 

SPP at the metal-buffer layer interface, we are therefore 

interested in finding   in the range:  

min20Remax20 sinsin  kk al  The angles 

max  and min correspond to grazing incidence

 090  and c  respectively. Therefore, the desired 

range of alRe  would be  2010 k,k  . For the 

parameters under consideration the range of alRe is 

 00 k5.3,k8577.2 . The angle   in the Otto 

configuration (Fig.1) can be calculated from the value of 

computed   applying Snell’s law. The real and 
imaginary parts of the computed Neff for the Otto 
configuration are plotted against the buffer layer thickness 

in Fig. 6, with M = -125.735 + j3.233, 1 = 8.1667, 2 = 

12.25,  =1.55 m . One notes the departure from the 

values for the isolated M-D interface: the loss component 
increases for smaller buffer layer thickness while the real 
part decreases. The dispersion curves indicate that below 
a certain buffer layer thickness (about 0.2 m  for the 

present parameters) in Otto configuration, the computed 

  corresponds to an angle  , which is less than the 

critical angle at the prism base and the characteristics of 
the excited mode deviate to a great extent from an ideal 
surface plasmon mode.  We may therefore conclude that 
to excite SPP at the metal-buffer layer interface in Otto 
configuration, we cannot arbitrarily reduce the gap 
between the prism and metal. For larger gap, the 

computed effN , as expected, approaches that of the 

isolated Metal-Dielectric (of the buffer layer) interface. 
But, one cannot in practice make the gap arbitrarily large 
as it would lead to weaker coupling of SPP through the 
tunneled evanescent tail generated at prism-buffer layer 
interface. The dispersion of effective index for K-R 
scheme for the same set of parameters corresponding to 
Fig. 6 (Otto) are shown in Fig. 8. In the K-R case, for 
smaller buffer-layer thickness, both the loss component 
and the real part of the modal effective index increase. In 
both the Otto and K-R excitation schemes, the SPP mode 
is inherently leaky, but with suitable adjustment of the 
buffer layer thickness it is possible to realize quasi-bound 
plasmon mode in the metal-dielectric interface. Using the 
computational windows (Figs. 4 and 5), we studied how 
the SPP mode evolves as the buffer thickness is varied 
from very small to large values in both the schemes. From 
the computed results, we present a few representative 
plots of the normalized eigen vector (Hy) in Fig. 7 (Otto) 
and 9 (K-R) for two values of buffer thickness in each 
case. The other parameters are the same as those used in 
the dispersion diagrams. In both configurations, for the 
larger buffer thickness, the mode looks like a true SEW 
with its distinct modal features. Computation with 
progressively smaller buffer thickness shows that the 
characteristic modal feature of the SPP gradually 
diminishes and the SPP mode becomes less tightly bound 
to the interface because of enhanced coupling of the 
surface wave with the free electromagnetic wave inside 
the prism. In both Otto and K-R configurations, the SPP 
mode becomes lossy (leaky) for very thin buffer 
thicknesses However such transition from a quasi-bound 
to leaky mode takes place at much larger buffer thickness 
in case of Otto configuration, when compared with K-R 
configuration. It may be noted that the modal feature of 



SPP in K-R configuration resembles that of the dominant 
asymmetric slow surface plasmon wave in a three-layer 
D-M-D slab waveguide where the phase velocity 
decreases with decreasing metal thickness. 
 

 
Figure 6. Dispersion of real and imaginary parts of Neff  in 
Otto configuration (Fig.3a) 
 

Figure 7. Plot of normalized eigen vector ( yH ) for the 

SPP mode in the Otto configuration (Fig.3a) for a buffer 
layer thickness of 2.00 m (left) and 0.50 m  (right)  

Figure 8. Dispersion of real and imaginary parts of 
surface plasmon mode effective index with metal layer 
thickness in three-layer K-R configuration (Fig.3b)  

Figure 9. Plot of normalized eigen vector ( yH ) for the 

SPP mode in the K-R configuration (Fig.3b) for a buffer 
layer thickness of 2.00 m (left) and 0.02 m  (right) 

 

4. Conclusions 
 
The criticality of the buffer gap thickness and the loading 
effect of higher index prism on the surface plasmon mode 
were studied in [8]. However, the semi analytical method 
of line modeling scheme, applied to both Otto and K-R 
configurations, helps in quicker simulation and better 
understanding of the quality of SPP modes and effect of 
prism loading. In absence of any empirical relation for the 
optimum buffer-layer thickness, our study illustrates the 
utility of MOL for studying the evolution of plasmonic 
mode with buffer thickness that should be valuable in 
designing the SPP excitation schemes in photonic 
integrated circuits. In both the schemes, when the buffer 
thickness is smaller than a certain value, the mode loses 
the distinct SPP features. We may also conclude from the 
nature of dispersion of modal features with buffer layer 
thickness that K-R configuration would be a preferred 
excitation scheme compared to Otto configuration in 
nanophotonics where size minimization is a major 
concern as the SPP mode becomes weekly bound to the 
interface at much smaller buffer thickness in K-R 
configuration. 
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