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Abstract

State dependent models have found wide applications in
information theory and communications. The major ap-
plications include coding for memory with defective cells,
MIMO broadcast channels for future wireless networks,
etc. In both these models, the state process is available only
at the transmitter and not at the receiver. Acquiring the state
process at the transmitter often comes with an associated
cost. To model this, message dependent actions on whether
to acquire the state process was recently proposed in litera-
ture. An open question here is whether the performance can
be as good by only acquiring part of the state process. In
this paper, we demonstrate that there is always a price to be
paid if the complete state process is not acquired, settling a
known open question. In the process, we also characterize
the exact capacity of such state probing models, which was
hitherto unknown.

1 Introduction

State dependent channel models have a long history in the
information theory domain. They are used to model situ-
ations in which the channel transition probability is gov-
erned by an external random process, known as the state
process. Various interesting scenarios arise depending upon
the extent of state knowledge—for instance, the state may
be known only at the encoder/decoder, at both or at none
of the terminals. The case of channel state availability at
the encoder can be further categorized into causal or non-
causal (the entire state sequence is known before transmis-
sion). The pioneering works on state dependent models
are the papers by Shannon [1] (causal case) and Gelfand
& Pinsker [2] (non-causal case). The latter model is very
much relevant in the context of coding for memory with
defective cells, which was studied in [3]. Other practical
applications of the model include wireless channels with
fading, write-once memory with programmed cells, com-
munication in the presence of jamming,etc. [4]. Costa [5]
introduced the dirty paper coding (DPC) scheme for a
state-dependent Gaussian channel with non-causal state
knowledge at the encoder, wherein the result of Gelfand-
Pinsker [2] was applied to prove the surprising fact that the
capacity is unchanged by the presence of the state. Dirty

paper coding has also found wide applications in multi-
antenna (MIMO) wireless broadcast channels — see Wein-
garten et al. [6].

In the state dependent models mentioned above, the state
is assumed to be generated by nature. Motivated by multi-
stage encoding settings like two-stage recording on a mag-
netic storage device, Weissman [7] introduced channels
with action dependent states. In this setting, an action en-
coder takes message dependent actions that influence the
formation of channel states, and the channel encoding is
based upon the state sequence and the message. In this
setting, the actions not only control the channel states, but
also facilitate message communication. Weissman [7] de-
rived the capacity of this model in the form of a single-letter
characterization.

Following Weissman [7], the action-dependent channel
framework has been eextended in several works. These in-
clude Permuter et al. [8], who studied the source coding
dual problem in which the decoder can take actions based
on the observed compression index. Asnani et al. [9] in-
troduced a setting in which the encoder as well as the de-
coder can take probing actions to learn the channel state,
with a cost constraint associated with such actions. The
main concern of the current paper is an open question posed
in [9] regarding the AWGN version of their Probing Ca-
pacity model, which enquires whether constant probing is
required. The answer turns out to be affirmative. In the
process, we also settle the capacity characterization for the
Gaussian probing model in [9].

Paper Organization: We briefly describe the Probing Ca-
pacity model of [9] in Section 2. Section 3 establishes the
capacity for the same, by providing a converse argument
based on revealing the actions to the receiver. Finally Sec-
tion 5 concludes the paper.

2 Probing Capacity

Consider the setting shown in Figure 1. We consider a
Gaussian state-dependent channel given by

Y =X+S+2Z, ey
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Figure 1. The original Probing Capacity model [9]

with S ~ A47(0,Q) and Z ~ .4#(0,N) being independent.
The input is constrained in average power to P. The en-
coder does not directly observe the state as in Costa [5], but
an erased version is seen at the encoder. More specifically,
based on the message M, a binary action sequence A" (M)
is generated which controls the state observability at the en-
coder. If A = 0, then no state information is available, which
we term as an erasure. On the other hand, complete state
information is revealed to the encoder when A = 1. Thus
the state information at the transmitter can be described as

follows.
ifA=1
Se: S 1 5
* ifA=0

where the random variable A is binary with P(A = 1) = €.
Note that € can also be interpreted as the cost constraint on
the binary action sequence.

Now we define the notions of achievable rate and capacity
in the current setting. The message M is assumed to be
drawn uniformly from the set [1 : 2"K]. The state sequence
S§" is i.i.d., and independent of the message M. A (2"R n)
code for the given setting consists of the following. (Note
that the calligraphic letters below denote the alphabets of
the corresponding random variables.)

e Action Map A"(M) : [1 : 2"8] — &/™ = {0,1}", such
that the action sequence obeys the cost constraint
P(A = 1) < &. The state observed by the enocder is
obtained as S, = f(A,S), where f(-) is a deterministic
function.

e Channel encoder map X"(M,S") : [1 : 2"R] x /" —
.

s Decoder map M(Y") : %" — [1 : 2"R].

The probability of error is defined as
P,=PM#MY")). 2)

A rate R is said to be achievable if there exists a sequence
of (2"% n) codes for increasing block lengths n such that
P! 222 0. The capacity C is the supremum of all achiev-

able rates.

In Asnani et al. [9], an achievable rate was derived for the
above setting based on a power splitting scheme, though

its optimality was not established therein. In fact, [9] con-
cluded by posing the question as to whether the interference
free capacity, given by C = Slog (1+ £) (Costa [5]), can
be achieved even under imperfect state observation. In the
sequel, we answer this question in the negative, by show-
ing that a rate loss is incurred even in the relaxed setting
where the action sequence is available at the receiver. In
the process, we also settle the capacity characterization for
the Gaussian probing capacity model in [9].

3 Rate Loss due to Imperfect Side Informa-
tion
We have the following theorem.

Theorem 1. The capacity for the Gaussian Probing chan-
nel is given by

(] — 8) P1 € P2
C= 1 1 —1 1+—=.
S I R v R R Y
8P2+(178)P1 <P

3)

Remark 2. Clearly, the interpretation here is that there is a
loss in capacity compared to the case of Costa’s dirty paper
coding setup [5], where the state is perfectly available at
the transmitter.

Proof. As in standard information theoretic proofs, there
are two parts to any capacity theorem. The achievability
proof involves showing that there exists a coding scheme
to achieve the given rate. On the other hand, the converse
proof involves showing that any achievable rate cannot ex-
ceed the given rate. The achievability for Theorem 1 is
given in Subsection 3.1, while the converse is detailed in
Subsection 3.2. |

3.1 Proof of Achievability

The achievability follows by time-sharing between the
strategies of a) dirty paper coding when the side informa-
tion is not erased (A = 1) and b) simply treating S+ Z as
noise when the side information is erased (A = 0). We as-
sign different input powers in the two scenarios as follows.

x_ [Xla=) =X~ ¥ (0.P), ifA=]
1 XIA=0)=X; ~ A4 (0,P), ifA=0"

Thus when A = 1, which happens for € fraction of the time,
we have S, = S, and so pick

P,

U=X+oaS, a = ——,
2t P +N

where X, L S and Xp ~ .4°(0,P2). So by dirty paper cod-
ing [5], we achieve a rate of %log (1 + %), for € fraction

of the time. On the other hand, when A = 0, which happens
for (1 — €) fraction of the time, we have S, = * and so we



simply treat S+ Z as the noise, use X; ~ .47(0,P;) to ob-

tain a rate of %log (1 + ﬁ) The power constraint to be

satisfied is
(1—e)P+eP, <P 4)

Thus the average rate

(-9 PN Eroaf1s P
R= > log 1+Q+N +210g H_N , (5

is indeed achievable.

3.2 Proof of Converse

We first note that the capacity in the discrete case is given
by the single-letter Gelfand-Pinsker [2] formula i.e.

Cpyc = max[[(U;Y) —I(U;S,)]. 6)

This is simply a consequence of the fact that the available
side information at the encoder (which appears in the cov-
ering negative mutual information term) is S,. To obtain an
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Figure 2. Relaxed Setting in which the action sequence is

made available at the decoder

upper bound, we consider a relaxation of the original set-
ting where A” is made available to the receiver, as shown in
Figure 2. The capacity of the relaxed setting would serve
as an upper bound for the capacity of the original setting.
On the other hand, the capacity of the relaxed setting can
be determined to be

Cret = max[[(U;Y,A) —1(U;S,)]. @)

This is because the Gelfand-Pinsker formula can be applied
by considering (¥,A) to be the augmented output. Also note
that via the chain rule of mutual information [10], we have

HU:S0A) = I(U:S) + LLAST . ®)

This in turn implies that (on expanding I(U;S,,A) the other
way round)

[(U;S,) = I({U;A) +1(U; S |A) 9)
I(U;A)+el(U;S|A=1). (10)

Hence the upper bound on the capacity of the original chan-
nel can be written as

R<I(U;Y,A)—1(U;S,)

Y IU.Y,A) — (U;A) — el(U:S|A = 1)

=I(U;Y|A)—€l(U;S|A=1)
=e[I(U;Y|A=1)—I(U;S|A=1)]
+(1—-¢e)I(U;Y|A=0)
—eh(Y|[A=1)—h(Y|U,A=1)
—h(S|A=1)+h(S|U,A=1)]
+(1-&)A(X+S+ZIA=0)—h(X+S+Z|U,A=0)]

Y eln(y|a=1)—h(¥|U,A=1,5)

—h(S)+h(S|Y,U,A =1)]
+(1—&)[h(X +S+ZJA =0)— h(S+Z|U,A = 0)]

9 elh(Y|A=1)—h(Y|U,A=1,5)

—h(S)+h(S|Y,U,A=1)]
+(1—&)[h(X+S+Z|A=0)—h(S+Z)]

%) elh(Y|A=1)—h(Z)—h(S)+h(S|Y,A=1)]

+(1—¢€)h(X+S+Z|A=0)—h(S+2Z)]
— e[h(Y|S,A=1)—h(Z)]

+(1—e)h(X+S+Z|A=0)—h(S+Z)]
<elh(X+ZIA=1)—h(Z)]

F(1—e)h(X +S+ZIA=0)—h(S+2)]
() g Var [X|A = 1]+N
o 1)

(1—¢) Var[X|A=1]+Q+N
2 log< Q+N )

€ P,+N +(1—6)10 Pi+Q+N
2 %\ TN 2 B\ 04N
&

P (1—¢) P,
= —1 1+—= I 1
2og( +N>+ > 0g< +Q+N>

& P (1 — 8) P
< max —log| 14+ — log| 1 ,
T (R 2 g( +N>+ 2 s +Q+N
ePy+(1-€)P <P

+

()
<

1)

where

¢ (a) follows from expression (10)

* (b) follows since h(A|B) — h(C|B) = h(A|C,B) —
h(C|A, B) for any three random variables (A, B,C), the
independence of S” and M, and the fact that X is com-
pletely determined by U when A = 0

* (c) follows since S and Z are independent of (A,U)
when A =0

¢ (d) follows since conditioning reduces the entropy

¢ (e) follows since the Gaussian distribution maximizes
differential entropy for a given variance, and

* (f) follows since the different variances involved are
Var[X|A = 1] = P> and Var[X|A = 0] = P.



Thus we have that any achievable rate satisfies

1—8) P] € Pg
1 1 —1 1+—
2 Og<+Q+N)+2Og(+N

12)

max
(P1,Py)
eP+(1—€)P <P

R<

This completes the proof of converse. Hence the capacity
is indeed characterized by

(1—8) Pl ) P2
5 log 1+Q+N +210g 1+N

13)

C= max
(P,Py)

8P2+( 178)}71 <P

Remark 3. Note that this settles the question left open by
Asnani et al. [9], regarding the setting Learning to Write on
Dirty Paper, where cost-constrained binary actions based
on the message affect state knowledge at the encoder. We
note that our converse bound involves giving the erasure
pattern to the receiver, which in turn implies that any mes-
sage dependent randomization or actions as in [9] will not
increase the capacity. The best strategy simply amounts to
timesharing between dirty paper coding and treating un-
known state as noise. (Note that in Asnani et al. [9], €
stands for the cost constraint on the action sequence.)

4 Numerical Computations

Now by taking P = Q = N = 1, we illustrate the trade-off
between capacity and probing cost in Figure 3. The capac-
ity is given by the blue curve in Figure 3. We have also
depicted the line obtained by naive time-sharing between
%log (1 + ﬁ) and %log (1 + %), which is given by the
black line. Thus it is evident that the capacity-achieving
strategy outperforms naive time-sharing.
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Figure 3. Illustration of the capacity versus probing cost
trade-off for P=Q=N=1

).

5 Conclusion

We revisited the setting of a Gaussian state dependent chan-
nel with state observations controlled by message depen-
dent action sequences. It was shown that unlike dirty paper
coding, complete state cancellation is not possible. The ex-
act capacity was characterized which shows that a rate loss
is incurred compared to the case of full state information
known at the encoder, and the best strategy is to simply
time share between dirty paper coding and treating the state
as noise.
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