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Abstract

For semi classical lasing, the FDTD (finite difference time
domain) formulation including nonlinearities is often used.
We determine the computational efficiency of such schemes
quantitatively and present a hueristic based on space filling
curves to minimize complexity. The sparse matrix kernel is
shown to be optimized by the utilization of Bi-directional
Incremental Compressed Row Storage (BICRS). Exten-
sions to high performance clusters and parallelization are
also derived.

1 Introduction

The empirical knowledge of light matter interactions and
propogations has been quantified cohesively since the close
of the nineteenth century by Maxwell [1]. With the ad-
vent of high performance computing (HPC) clusters, meth-
ods which were once discarded for their computational
excesses show new promise. This surge is evident in
the so-called ‘brute force’ class of computational methods
which comprise of the explicit finite difference time do-
main (FDTD) solvers. This recent interest may be attributed
to their fundamental simplicity and generality of applica-
tion compared to the tailored numerical methods typically
employed for specific large system analysis (e.g. nonlinear
Schrodinger approximation). The time dependent form of
Maxwell’s equations for scattering becomes computation-
ally intractable (for the FDTD scheme) as the ratio between
the characteristic linear dimension of the object with re-
spect to the wavelength becomes large [2]. The increase
in computational cost and poor scaling is offset sharply
by the benefit of being able to handle complex geometries
and easy source additions. The finite difference time do-
main technique is thus barred from use on large systems
due to poor scaling. Complicating matters, computationally
efficient grid methods like adaptive multigrid meshes are
not applicable to the solution of these equations for all but
low frequency cases due to oscilatory nature of higher fre-
quency systems. The differential solver typically used has
been extended to complex lasing systems[3] which show
promise for ultrafast pulse interactions. Additionally the
numerical solution of systems shown here in this manner
forms solutions which are easily compared directly to ex-
perimental data. Hence the application of highly efficient
data manipulation techniques for HPC software packages

is also relevant to the processing of experimental data. In-
deed the same data structures may be used to efficiently
interpolate numerical and experimental solutions.

We present here, the following numerical schema to effi-
ciently compute the features of interest. The standard con-
stitutive equations are discussed along with the reported
update mechanisms, before space filling curves are intro-
duced, along with the necessary data structures for maxi-
mally cache oblivous action. Suitable metrics to quantify
the bounds of the acceleration described are also derived.

2 Quasi Classical Lasing
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Figure 1. Four level 2 electron model system.

Let us consider the lasing scheme for a four level two elec-
tron atomic system [3] shown in Figure 1. For this setup,
our constitutive equations are (where P is the polarization
density, P, is the interband photon absorbing and P, is the
interband photon emitting densities):

1. The simplified two level Bloch equations (governing

equations):
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2. The four level electron populations:
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3. These are coupled to the Maxwell-Ampere law:
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4. While to advance the magnetic vector through time,
the Maxwell-Faraday law is used:
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We note that P, is the polarization density, with the reso-
nant frequency ®, which in turn furnishes 7@ as the energy
difference, &, = 6meyc’ /@3, 721 and ; is the damping coef-
ficient to simulate the nonradiation loss. Finally the electric
field is inclusive of the contributions of both pumping and
emission signals. We shall discretize the solution in both
time and space so as to obtain the characteristic leap-frog
schema.

3 Grid Solution Setup

In this case the field update equations are implicitly depen-
dent on the electron populations. Since the derviation of
the equations above treats only the atom quantum mechan-
ically, we shall update the time step purely through consid-
erations of Maxwell’s equations. No attempt is made here
to discuss the numerical instabilities common to all grid
solvers. It is expedient to note that higher order difference
approximations are typically of limited usage as they do not
handle multiple boundaries. We shall also rely on the clas-
sical field update limit of the propogation, that is we shall
use the Courant number [4], given by S, = Z—AX’. Following
Chang and Taflove [3] we shall restrict ourselves to the one
dimensional case, and therefore take the optimum ratio for
the Courant number to be 1. The relevant discretized update
equations are then as mentioned shown by [5]:

1. Polarization density update:
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A similar update is performed for P,

2. Maxwell-Ampere update (about m)

A
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Where it it understood that H"0 is initially speci-
fied law, and AP, is the finite time difference of the
polarization densities at time levels n — 1 and n+1 to
achieve a central difference.

3. Explicit Population Density Update
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Where we have simply used the conservation law for
the last density.

4. Maxwell-Faraday update (about grid point m)

A
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(18)

Each grid point, apart from the initial conditions (excluding
boundary values, Figure 2) of P(:',Pg‘,E”,H"‘*O'S,N{'*O'S,N{)‘
can be written out in the form of an ‘element’ equation, and
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Figure 2. Initial 1D computational scheme.

then assembled over the entire grid as is standard for the
1D finite element methods such as the weak formulation of
the Galerkin method [6]. We note that the equations above
can be generalized further to a three dimensional N-level
atomic system. We shall now enumerate the form of an
optimal solver.

4 Operational Optimality

We presume certain ideas of solution optimality, namely,
we shall aim for:

e Scalability

* Cache Oblivous Operation

Where scalability shall be assumed to imply a scaling over
computational resources either in terms of solver speed or
system size. Cache oblivous shall mean that the algorith-
mic form is able to efficiently use the cache (high cache
hit ratio) without consideration of exact CPU architecture.
For practical purposes this is possible by the transforma-
tion of data to a 1D form, as 1D data structures are cache
oblivous. We shall now shift to the usage of space filling
curve techniques to solve the system of element equations
defined above. First we shall note that for our purposes, it
is suitable to define a space filling curve to be a many-to-
one dimensional mapping such that locality is preserved.
Furthermore, recognizing that the solution to the system
defined is essentially the solution of either an equivalent
sparse matrix equation, we shall consider the Peano curve
(for matrix-matrix multiplication), as well as the Hilbert
curve (for matrix-vector operations, parallelization and dis-
tribution) [7]. To ensure cache oblivious operation, the
Hilbert curve is used to store the nonzeros of the sparse
matrix and further we note that the standard form of the
1D Galerkin is of the form amenable to the Bi-directional
Incremental CRS (Compressed Row Storage) (BICRS) [8].
This is evident from the sparse matrix vector multiplication
which is required for each step’s global update. Due to the
structured nature of the matrix assembled as part of the Fi-
nite Element formulation however, the CRS (Compressed
Row Storage) may well be more suitable. For the matrix-
vector operations we obtain m? operations for 2m elements
whenever m < n and n is the order of the matrix [7]. The
Hilbert curve generation via recursion is shown in Figure 3.

We also deal with the overall decomposition of the prob-
lem space across processors in terms of the Hilbert curve.
Here we utilize the fact that a matrix in memory can be dis-
cretized and traversed as an optimal stack [7] (Figure 4).

Figure 3. Hilbert curve to and from a 6 by 6 space

The fast fourier transform and its inverse is used to convert
the numerical signal obtained into familiar data [3].
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Figure 4. Division and traversal of data stream along the
Hilbert curve.

5 Conclusion

We have described the form of an optimal solver for las-
ing systems. This has applications to the ultrafast domain.
It may be trivially extended to involve the analysis of high
volume experimental data. The methodology described is
also applicable to other similar coupled equation solvers
and will be quantitatively described in future work. The im-
plementation details involving the optimal message passing
and concurrency are ongoing in Rust.
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