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Abstract

The goal of this paper is to provide a study about code divi-

sion multiplexing (CDM) technique in the next-generation

Multiple-Input-Multiple-Output (MIMO) millimeter wave

(mmWave) automotive radar sensors. In particular, we

highlight the performance advantages that can be leveraged

through the flexibility in transmit waveform when perform-

ing conventional signal processing techniques. Further,

we provide numerical examples for comparison between

a mmWave automotive radar sensor equipped with CDM-

MIMO and its conventional frequency modulated continu-

ous wave (FMCW) phased-array counterpart.

1 Introduction

Next-generation millimeter wave (mmWave) automotive

radar sensors should have high range and spatial resolu-

tions to clearly distinguish objects and enhance safety and

comfort in self-driving/autonomous vehicles [1, 2]. High

range resolution can be obtained by deployment of very

high signal bandwidth while larger effective antenna aper-

ture yields desired spatial resolution. However, increas-

ing the bandwidth can increase the probability of distortion

by other radio frequency (RF) systems transmitting at the

same time. Orthogonal waveforms are a key to overcome

these difficulties and improving the angle resolution (spa-

tial resolution) of mmWave-radars. In fact, the orthogonal

waveforms, dealt in the context of multiple-input multiple-

output (MIMO) radar systems, enable the receivers to sep-

arate waveforms [3]. This, enhances spatial resolution, im-

proves detection performance, and refines parameter iden-

tifiability [3–8].

Recently, automotive MIMO radar sensors are commer-

cially introduced to enhance resolution and parameter es-

timation [9, 10]. Hopefully, in the immediate future; the

76− 81 GHz frequency band will be widely deployed and

add high-resolution radar performance [10–12]. In this re-

spect, different multiplexing strategies are introduced in the

literature [4, 5, 13–20], each having its own advantages and

shortcomings; hence, the next-generation radar systems are

provided with a plethora of waveforms requiring judicious

selection to enhance the performance.

It is clear that in a MIMO radar system, receive (RX) an-

tennas must be able to separate the signals corresponding

to different transmit (TX) antennas (for example, by hav-

ing different TX antennas transmit on orthogonal channels).

There are different ways to achieve this separation, and four

such techniques will be discussed below.

2 Different Multiplexing Strategies for Auto-

motive MIMO Radar Sensors and CDM-

MIMO

In order to achieve the waveform orthogonality needed

for the MIMO radar systems, several approaches in-

cluding code-division-multiplexing (CDM) [4, 5, 13–15],

Doppler-division multiplexing (DDM) [16–18], frequency-

division-multiplexing (FDM) [18–20], and time-division-

multiplexing (TDM) [9, 21–25] have been developed.

Among them, DDM, FDM, and TDM can provide almost

perfect orthogonality. However, in comparison to CDM,

they suffer from strong azimuth-Doppler coupling, lower

amount of maximum Doppler frequency and shorter target

detection range, respectively [15].

DDM-MIMO waveform means the center frequencies of

the signals transmitted by different transmit antennas are

shifted slightly so that these signals can be separated in

Doppler domain. The frequency gap between two adja-

cent antennas should satisfy two requirements: (i) it should

be equal or larger than 1
Tp

, where Tp is the pulse width of

transmit signal, to satisfy the orthogonal requirement; (ii)

it should be equal or larger than two times of the possible

Doppler shift caused by the fastest moving target to guar-

antee the signals transmitted by different antennas can be

separated in Doppler domain [15].

In FDM-MIMO, the signals transmitted by different anten-

nas are modulated by different carrier frequencies. This

technique can be implemented in single pulse (fast-time)

or a pulse train (slow-time). In fast-time FDM-MIMO,

each antenna transmit a signal and the frequency gap be-

tween two adjacent antennas is equal to the signal band-

width transmitted by each antenna. However, due to the

linear relationship between the carrier frequency and the

index of antenna element, a strong range-azimuth coupling

will occur after MIMO beamforming [15].

TDM-MIMO is the most simple way to separate signals

from the multiple TX antennas and is therefore commer-

cially used [9]. In conventional TDM-MIMO (alternative

transmitting approach), each transmit antenna transmits its



own waveform alternatively, and there is no overlap be-

tween any two transmissions [15]. In this method, ideal

orthogonality can be achieved and the conventional radar

waveform (e.g., chirp waveform, Barker sequences, etc.,)

can be directly used in all transmitters. The more effec-

tive implementation of TDM-MIMO is recommended in

[21] where time-staggered frequency modulated continu-

ous wave (FMCW) waveform is used. In this case, setting

the transmitting time proportional to the maximum unam-

biguous range, the transmission capabilities of all transmit

antennas can be fully utilized.

CDM-MIMO waveform means the signals transmitted by

different TX antennas are modulated by different series of

orthogonal sequences, either in fast time or in slow time,

so that these signals can be separated/decoded in radar re-

ceiver. Let us consider a fast-time CDM-MIMO radar sys-

tem with NT transmit antennas. The m-th antenna transmits

a code vector composed of N sub-pulses that can be ex-

pressed as,

xm = [xm(1),xm(2), . . . ,xm(N)]T ∈ C
N
, m ∈ [1,NT ], (1)

where xm(n) is the n-th sub-pulse of the transmit code vec-

tor xm. Let {xm}
NT
m=1 be columns of the code matrix X , viz.,

X = [x1,x2, . . . ,xNT
] ∈ C

N×NT
. (2)

The aperiodic cross-correlation [26] of {xm(n)}
N
n=1 and

{xl(n)}
N
n=1 at lag k is defined as,

rml(k) =
N−k

∑
n=1

xm(n)x
∗
l (n+ k) = r∗lm(−k),

m, l = 1, . . . ,NT , −N +1 ≤ k ≤ N −1, (3)

when m = l, (3) becomes the aperiodic auto-correlation

of {xm(n)}
N
n=1. Notice that, the in-phase lag of auto-

correlation function (i.e., k = 0), represents the energy com-

ponent of the sequence whereas the out-of-phase lag (i.e.,

k 6= 0) represent the sidelobes. Since the ideal orthogonal

code sequence with good auto- and cross-correlation prop-

erties does not exist [5], the CDM-MIMO waveforms can

just approximately satisfy the orthogonality requirement. In

the sequel, we numerically show that how CDM-MIMO

can achieve higher angular resolution and target identifia-

bility in comparison with its FMCW phased-array counter-

part.

CDM-MIMO has some advantageous performance charac-

teristics. The waveform generation is very simple; being

that the chips can directly modulate the local oscillator. The

phase modulation in the transmitter can be used to add in-

formation in the signal, which could be very useful to avoid

interferences of twin systems that at some point could in-

terfere between each other. CDM-MIMO radars also can

deliver high interference robustness and accomplish one of

the short range radar high resolution requirements, which

is the range resolution. This performance can be achieved

with many fewer constraints than using FMCW phased-

array radar. Unfortunately, there are also some disadvan-

tages in CDM-MIMO radars to be taken into account. The

baseband bandwidth of CDM-MIMO radars is very big, be-

ing its half of the RF bandwidth. As an example, there can

be named a system at 79 GHz using the 4 GHz of the spec-

trum with possible range resolution of 3.75cm, but there

will be needed an ADC sampling at 4Gsps.

3 Numerical Examples

Let we consider a radar system with a uniform linear ar-

ray (ULA) and half-wavelength spacing between adjacent

antennas is used for both transmitting and receiving. We

assume NT = 10 number of transmit antennas, NR = 10

number of receive antennas and M transmit waveforms are

utilized which are random binary sequences with length

N = 64. We study three different cases:

1. M = 1, which shows the phased-array radar system.

2. M = 3, which shows the semi-orthogonality in the

radar system.

3. M = 10, which shows the CDM-MIMO radar system.

Similar to the [27], we assume that K targets are located at

θ1 = 0◦, θ2 = 10◦, θ3 =−10◦, θ4 = 20◦, θ5 =−20◦, θ6 =
30◦, θ7 = −30◦, . . . , with identical complex amplitudes,

β1 = . . .= βK = 1.

The received signal is corrupted by a spatially and tempo-

rally white circularly symmetric complex Gaussian noise

with mean zero and variance 0.01 (i.e., SNR = 20dB) and

by an interference source located at 45◦ with an unknown

waveform (uncorrelated with the waveforms transmitted by

the radar) with a variance equal to 1 (i.e., INR = 20dB).

Figure 1a, shows the Cramer-Rao bound (CRB) of θ1 for

the phased-array (M = 1), semi-orthogonal MIMO (M = 3),

and CDM-MIMO (M = 10) radar as a function of K keep-

ing the same all the other parameters as for the MIMO radar

and its counterparts. The transmitted waveform is adjusted

so that the total transmission power does not change. Note

that the phased-array CRB increases rapidly as K increases

from 1 to 6. The corresponding MIMO CRB, however, is

almost constant when K is varied from 1 to 8. We next

consider a simple nonparametric data-independent least-

squares (LS) method [27]. Figure 1b shows the LS spa-

tial spectrum as a function θ , when K = 8. Note that all 8

target locations can be approximately determined from the

peak locations of the LS spatial spectrum whereas they can

not be separated in phase-array or semi-orthogonal cases.

To further investigate the effect of designed sequences on

the spatial resolution, let we consider a conventional re-

ceiver processing unit (i. e., matched filter, Doppler and

angle processing) for the waveforms emitted by a ULA

phased-array/MIMO radar system employing 3 transmit an-

tennas with 4 × 0.5-wavelength interelement space and 4

receive antennas with 0.5-wavelength interelement spacing.

Precisely, the radar with NT = 3 and NR = 4, would com-

pute 4× 3 = 12 range-Doppler matrices and the 2D-FFT
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Figure 1. Comparison between performance of FMCW

phased-array and CDM-MIMO automotive radar system.

Semi-Orthogonal is the case when number of orthogo-

nal sequences is M = 3 and in the case of CDM-MIMO,

M = NT . Both phased-array and MIMO radar systems use

a ULA with NT = NR = 10 antennas, and 0.5-wavelength

interelement spacing is used for both transmitting and re-

ceiving.

matrices are then summed to create a pre-detection matrix,

and then a detection algorithm identifies peaks in this ma-

trix that correspond to valid objects. For each valid ob-

ject, an angle-FFT is performed on the corresponding peaks

across these multiple 2D-FFTs, to identify the angle of ar-

rival of that object. In Figure 2, the range-angle plots of the

two targets moving toward the radar system is depicted for

both cases of the phased-array and MIMO radar systems,

when the angle-FFT is applied. This figure depicts that the

better spatial resolution of the CDM-MIMO radar system

lead to the better spatial separation. The input SNR utilized

for this simulation is SNR = 10 dB.

4 Conclusion

In this paper, we briefly described various techniques of

waveform design for next-generation automotive radar sen-

sors including CDM, DDM, FDM and TDM. In case CDM-

MIMO, we numerically illustrated that how this technique

can enhance parameter identifiability and angular resolu-

tion of a mmWave automotive radar sensor in comparison

with its FMCW phased-array counterpart.
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(b) MIMO.

Figure 2. Comparison between range-angle separation of

phased-Array and CDM-MIMO automotive radar systems

where a ULA with NT = 3 and NR = 4 is used.

5 Acknowledgments

This work was supported by FNR (Luxembourg) through

the BRIDGES project “Adaptive mm-Wave Radar platform

for Enhanced Situational Awareness: Design and Imple-

mentation (AWARDS)”.

References

[1] F. Engels, P. Heidenreich, A. M. Zoubir, F. K. Jon-

dral, and M. Wintermantel, “Advances in automo-

tive radar: A framework on computationally efficient

high-resolution frequency estimation,” IEEE Signal

Processing Magazine, vol. 34, pp. 36–46, March

2017.

[2] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Au-

tomotive radars: A review of signal processing tech-

niques,” IEEE Signal Processing Magazine, vol. 34,

pp. 22–35, March 2017.

[3] H. He, J. Li, and P. Stoica, Waveform Design for Ac-

tive Sensing Systems. Cambridge University Press,

2012.

[4] M. Alaee-Kerahroodi, A. Aubry, A. De Maio, M. M.

Naghsh, and M. Modarres-Hashemi, “A coordinate-

descent framework to design low PSL/ISL se-

quences,” IEEE Transactions on Signal Processing,

vol. 65, pp. 5942–5956, Nov 2017.



[5] H. He, P. Stoica, and J. Li, “Designing unimodular se-

quence sets with good correlations; including an ap-

plication to MIMO radar,” IEEE Transactions on Sig-

nal Processing, vol. 57, pp. 4391–4405, Nov 2009.

[6] J. Li and P. Stoica, MIMO Radar Diversity Means Su-

periority, pp. 594–. Wiley-IEEE Press, 2009.

[7] A. Hassanien and S. A. Vorobyov, “Phased-MIMO

radar: A tradeoff between phased-array and MIMO

radars,” IEEE Transactions on Signal Processing,

vol. 58, pp. 3137–3151, June 2010.

[8] M. M. Naghsh, M. Modarres-Hashemi, M. Alaee-

Kerahroodi, and E. H. M. Alian, “An information the-

oretic approach to robust constrained code design for

MIMO radars,” IEEE Transactions on Signal Process-

ing, vol. 65, pp. 3647–3661, July 2017.

[9] “Texas instrument: ’MIMO radar, application report’,

swra554,” May 2017.

[10] “Ultra-small, economical and cheap radar made pos-

sible thanks to chip technology,” March 2018.

[11] B. P. Ginsburg, K. Subburaj, S. Samala, K. Ra-

masubramanian, J. Singh, S. Bhatara, S. Murali,

D. Breen, M. Moallem, K. Dandu, S. Jalan, N. Nayak,

R. Sachdev, I. Prathapan, K. Bhatia, T. Davis, E. Seok,

H. Parthasarathy, R. Chatterjee, V. Srinivasan, V. Gi-

annini, A. Kumar, R. Kulak, S. Ram, P. Gupta,

Z. Parkar, S. Bhardwaj, Y. C. Rakesh, K. A. Ra-

jagopal, A. Shrimali, and V. Rentala, “A multimode

76-to-81GHz automotive radar transceiver with au-

tonomous monitoring,” in 2018 IEEE International

Solid - State Circuits Conference - (ISSCC), pp. 158–

160, Feb 2018.

[12] Y. Yu, W. Hong, H. Zhang, J. Xu, and Z. H. Jiang,

“Optimization and implementation of SIW slot array

for both medium and long range 77GHz automotive

radar application,” IEEE Transactions on Antennas

and Propagation, pp. 1–1, 2018.

[13] H. Ganapathy, D. A. Pados, and G. N. Karystinos,

“New bounds and optimal binary signature sets - part

II: Aperiodic total squared correlation,” IEEE Trans-

actions on Communications, vol. 59, pp. 1411–1420,

May 2011.

[14] M. Soltanalian, M. M. Naghsh, and P. Stoica, “On

meeting the peak correlation bounds,” IEEE Transac-

tions on Signal Processing, vol. 62, pp. 1210–1220,

March 2014.

[15] H. Sun, F. Brigui, and M. Lesturgie, “Analysis and

comparison of MIMO radar waveforms,” in 2014 In-

ternational Radar Conference, pp. 1–6, Oct 2014.

[16] K. W. Forsythe and D. W. Bliss, “MIMO radar wave-

form constraints for GMTI,” IEEE Journal of Selected

Topics in Signal Processing, vol. 4, pp. 21–32, Feb

2010.

[17] D. J. Rabideau, “Doppler-offset waveforms for

MIMO radar,” in 2011 IEEE RadarCon (RADAR),

pp. 965–970, May 2011.

[18] D. J. Rabideau, “MIMO radar waveforms and can-

cellation ratio,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 48, pp. 1167–1178, APRIL

2012.

[19] B. Liu, “Orthogonal discrete frequency-coding wave-

form set design with minimized autocorrelation side-

lobes,” IEEE Transactions on Aerospace and Elec-

tronic Systems, vol. 45, pp. 1650–1657, Oct 2009.

[20] B. Shtarkalev and B. Mulgrew, “Effects of

FDMA/TDMA orthogonality on the gaussian

pulse train MIMO ambiguity function,” IEEE Signal

Processing Letters, vol. 22, pp. 153–157, Feb 2015.

[21] G. J. Frazer, Y. I. Abramovich, B. A. Johnson, and

F. C. Robey, “Recent results in mimo over-the-horizon

radar,” in 2008 IEEE Radar Conference, pp. 1–6, May

2008.

[22] F. C. Robey, S. Coutts, D. Weikle, J. C. McHarg,

and K. Cuomo, “MIMO radar theory and experimen-

tal results,” in Conference Record of the Thirty-Eighth

Asilomar Conference on Signals, Systems and Com-

puters, 2004., vol. 1, pp. 300–304 Vol.1, Nov 2004.

[23] A. Zwanetski and H. Rohling, “Continuous wave

MIMO radar based on time division multiplexing,” in

2012 13th International Radar Symposium, pp. 119–

121, May 2012.

[24] C. Hammes, M. R. B. Shankar, Y. Nijsure, T. Spiel-

mann, and B. Ottersten, “Random phase center mo-

tion technique for enhanced angle-doppler discrimi-

nation using MIMO radars,” in 2017 25th European

Signal Processing Conference (EUSIPCO), pp. 2221–

2225, Aug 2017.

[25] Y. Tang and Y. Lu, “Single transceiver-based time

division multiplexing multiple-input-multiple-output

digital beamforming radar system: concepts and ex-

periments,” IET Radar, Sonar Navigation, vol. 8,

pp. 368–375, April 2014.

[26] J. Song, P. Babu, and D. P. Palomar, “Sequence

set design with good correlation properties via

majorization-minimization,” IEEE Transactions on

Signal Processing, vol. 64, pp. 2866–2879, June 2016.

[27] J. Li and P. Stoica, MIMO Radar Signal Processing.

John Wiley & Sons, Inc., Hoboken, NJ, 2009.


