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Abstract

Nowadays machine learning algorithms are being used ex-
tensively in industrial applications. Many a times these al-
gorithms are modified and fine tuned so as to improve the
current products and get better results. In this paper, we
analyse an industrial problem that was put forward in the
"IDA 2016 challenge’ and propose an improved solution
over the best solution identified as part of the challenge.

1 Introduction

Industry based machine learning challenges or contests are
popular these days. They present current problems in the
industry and encourage researchers, students and enthusi-
asts to come up with innovative solutions.

This manuscript addresses the solution for an industrial
challenge in autmotive industry: ’the IDA 2016 industrial
challenge’ [1]. The objective of this challenge is to create a
prediction model for judging whether there is an imminent
chance for the failure of a vehicle component. The dataset
is provided by Scania and is derived from their range of
heavy trucks. The component under study is the APS (Air
Pressure System). There are two classes in the dataset, the
positive class which corresponds to trucks with failure in
the APS and the negative class which corresponds to trucks
with failure in some other component. Altogether there are
76000 samples in the dataset, which includes 60000 train-
ing samples and 16000 testing samples.However, the dis-
tribution of the samples among the two classes is highly
imbalanced with a large number of samples favouring the
negative class and there is also an abundance of missing
values.

Researchers world-wide taken up the IDA industrial chal-
lenge and had produced great results [2, 3, 4]. The paper
by Camila F. Costa and Mario A. Nascimento [2] was se-
lected as the winner of the challenge in which they pro-
posed a Random Forest (RF) based solution to the problem
and has shown that their solution has outperformed the so-
lutions based on Support Vector Machines (SVM), Logis-
tic Regression (LR) and K-Nearest Neighbours (K-NN). In
this manuscript, we show that a carefully designed RF fur-
ther improves the classification accuracy substantially both
in terms of false positive rate (FPR) and false negative rate
(FNR). We have achieved this result by carefully improving
the strength and reducing the correlation of the RF.

This manuscript is organised such that section 2 provides
necessary theory and mathematical background of RF. We
introduce the measures for correlation and strength of trees
in RF that determines its classification power. Also, we dis-
cusses how these measures are manipulated to produce bet-
ter classification performance. Section 3 provides the im-
plementation details including the procedure we followed
for growing the trees. The superior performance of the pro-
posed method is then provided in section 4 by comparing it
with the state-of-the-art results in the literature.

2 Methodology

As we have mentioned in the introduction, the problem
that we are addressing in this paper is basically a classi-
fication problem. There are many classification algorithms
like SVM, LR etc which are originally designed to work
with linearly separable data [5]. For non-linearly separa-
ble data, these algorithms are extended by introducing addi-
tional techniques like kernel methods for SVM [6]. On the
other hand decision tree is very intuitive classifier that are
widely used with non-linear separable data producing high
classification accuracy. However they are prone to overfit-
ting. A RF is an ensemble of decision trees and does not
have the adverse effects of overfitting. This must be why
RF preformed the best when compared to other algorithms
as seen in the paper [2].Therefore we decided to start of
with the RF algorithm and come up with modifications, in
the hopes of getting a better result.

Before devising a strategy to improve the results produced
by RF, the factors that govern its accuracy and the fac-
tors that helps to avoid overfitting in RF have to be stud-
ied. Following subsections discusses these factors, where
we denote RF as a collection of tree-structured classifiers
h(x, )} _,,where the {®;} are independent identically dis-
tributed random vectors. Here /(x, ®) denotes a tree clas-
sifier where x is the input vector and ® is a bootstrapped
sample from the dataset.

2.1 Generalisation Power of RF

Overfitting occurs when we fail to develop a generic model
based on a dataset. This increases the probability of get-
ting errors when the model is applied on unseen data. Thus
the extend of overfitting can be measured by calculating the



generalization error. We are going to show that the gener-
alisation error in RF has a limiting value, there by implying
that RF has less chance of overfitting the data.

The generalization error for a collection of classifiers is de-
fined in terms of a margin function. Let {/(x)};_, be a
collection of classifiers. And, let Y, X be a random vector
sampled (from some distribution) from the training data.
Here Y is the set of class label corresponding to the input
vector in X. We now define the margin function of a collec-
tion of classifiers as
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where I(.) is the indicator function.

As stated above in equation 1, the margin functions gives
us an idea of by how much the average votes for the correct
class differs from the average votes for any other class. If
mg(X,Y) > 0, the collection of classifiers votes for the cor-
rect class. If mg(X.Y) < 0, the collection of classifiers votes
for an incorrect class. Also higher the margin, the more the
confidence in the classification.

Now the generalization error can be defined as
PE =Py y(mg(X,Y) <0) 2)

which is the probability that the value of the margin func-
tion is less than zero. In the context of random forests, each
classifier h(x) is h(x,®). Thus the margin function for a
Ramdom forest can be defined as

mr(X,Y) =Po(h(X,0)=Y) —max [Po(h(X,0) = j)] (3)

As the number of trees increases, PE converges to

Pxy(Pe(h(X,0)=Y) —rg?;‘ [Po(h(X,0) = j)] <0) 4)

This relation follows from the Strong Law of Large Num-
bers and its proof is given in the paper [7]. This means that
the generalization error has a limiting value and that ran-
dom forests do not over-fit the data.

2.2 Factors affecting Accuracy

The accuracy of RF increases as the generalization error
decreases. To study how accuracy relates to the individ-
ual trees in RF, we redefine generalization error in terms of
strength and correlation between the trees. We need the de-
cision trees in RF, to have high confidence in classification
and at the same time to look at the data in different way
when compared to other trees in RF. Thus we need to have

trees with maximum strength and minimum correlation in a
RE

There is an established result that says the generalisation
capabilty of RF can be increased by improving strength of
individual trees and reducing correlation between trees in
RF[7]. It is defined as

(1-5)
s2

PE<p ®)
where PE denotes the generalization error, p denotes the
mean correleation and s denotes the strength of RF.

Note that the conclusions we made about the generalization
error and its relationship between strength and correlation is
based on the assumption that the RF contains a large num-
ber of trees. However there is a research work that exper-
imently proves that these properties also hold for smallers
RFs with number of trees between 50 to 200 [8].

Now we look into how strength and correleation are formu-
lated and how we can manipulate them to suit our purpose.

2.2.1 Improving the Strength

As we inferred eariler from equation 5, one of the ways to
improve the accuracy of the RF is to increase its strength.
The strength can be thought of as a measure of how accurate
the individual trees are in predicting the correct class. It is
be defined as

s=Exy(mr(X,Y)) (6)

Here [E denotes expectation operator.

From equation 6 it is clear that to increase strength, we
must increase the value of the margin function. This can be
achieved by increasing the accuracy of the individual trees.

The accuracy of the tree depends on the decisions made
by the tree at each of its nodes. This is computed using
impurity measures of the node.

We use Gini’s Diversity Index as the measure of impurity
of each node in the tree. It is defined as

L=1=Y(P(i) (7

i

where I; denotes the impurity measure of node ¢, i denotes
a class at node ¢ and P(i) denotes the relative measure of
occurance of class i at node ¢. The sum is calculated over
all classes i that reach node . If the node has only one
class, its impurity will be zero and is called a pure node.
Otherwise, the impurity will be a positive value.

Now to decide what decision is to be made at a node we
calculate the impurity gain of all possible decisions that can
be made at a node. The decision that gives the best impurity
gain is assigned to that node.



The impurity gain at a node ¢ for a pirticular decision is
given as

AL =P(T —T,) x I, — P(T})) x I; = P(T;) x I, (8)

where Al is the impurity gain at node 7, T is the set of
all observation indices at node ¢. T, is the set of indicies
in T which have missing values. [ and r are left and right
child nodes resulting from the split at node ¢ by the decision
made. 7; and T, are the set of observations at the nodes / and
r respectively.

Here P(T) denotes the sum of the probablilites of all obser-
vation indicies in the set 7. It is defined as

P(T)=Y w; ©)
jer

where w; denotes the weight of observation j in T. w; is
equal to 1/n (unless specified otherwise), where n is the
number of observations in 7.

2.2.2 Reducing the Correlation

As inferred from equation 5, another way to improve the
accuacy of the RF is to reduce the correlation. The correla-
tion can be thought of as the measure of similarity between
two trees in RF.

The correlation is defined as

(@, ®) _ covxyy(rmg(&X,Y),;:mg(@,XJ))
sd(@®)sd(0©)

(10)

where p(®,0) denotes the correlation, rmg(®,X,Y) de-
notes the raw margin function and sd(.) denotes the stan-
dard deviation. The raw margin function, is defined as

rmg(®,X,Y) =1I1(h(X,0)=Y)—I(h(X,0) = j(X,Y)).
(11)
where I(.) is the indicator function and j(X,Y) denotes the
most probable predicted class other that Y (the true class),
which is calculated as.

J(X,Y) = argmax(Pe(h(X,0) = j) (12)
JAY

Rewriting the margin function for RF in terms of j(X,Y),
we get
mr(X,Y) = Po(h(X,0) =Y) — Po(h(X,0) = j(X,Y))
=Eo(I(h(X,0) =Y) ~I(h(X,0) = j(X,Y)))
=Ee(rmg(0,X,Y))
(13)

This means that the margin function is the expected value
of the raw margin function we defined in equation 11.

Thus from equation 10, we can see that to reduce the cor-
relation we have to reduce the variance between the trees

Table 1. Classification Results on Scaina APS Training
Dataset

Classifier % Miss-classification Rate

Random FPR: 50% FNR: 50%

SVM FPR: 1.15% FNR: 13.5%
LR FPR: 2.36% FNR: 9.5%
K-NN FPR: 2.94% FNR: 6.5%
RF FPR: 3.74% FNR: 3.7%

RF (our)  FPR: 2.8% FNR: 2.7%

Source: The first five rows were sourced from paper [2]

in RF. Bootstrap Aggregating ( or Bagging ) [9] is a good
technique which can applied to reduce the variance without
causing much changes in the bais. In this process each tree
is grown using a subset of the dataset. The subset is gen-
erated by randomly choosing samples (with replacement)
from the dataset. It has also been expreimently shown that
such types of ensemble methods can improve the accuracy
of classifiers [10].

Further improvements in accuracy can be achieved by
growing a seperate RF using misclassified data and com-
bining it with the original RF. The intuituion behind this is
the secondary RF will capture certain features missed out
by the original RF and thus improve the accuracy.

2.3 Addressing Missing Values

The dataset provided as part of the challenge contains a lot
of missing values. Ignoring the samples with missing val-
ues will leave us with very few training samples. The test
samlples also contains missing values and so it is necessary
that we find ways to impute the missing values. Also it is
necessary that we predict the missing values properly, oth-
erwise the RF algrithm may pick up the wrong pattens from
the data and perform poorly. K-Nearest Neighbours(KNN)
is a very good algorithm for prediciting data values. By
defining the value of K properly we can get a good estimate
of the actual values.

3 Implementation

The RF is created by growing N number of trees. Each in-
dividual tree is grown using boostrap-aggregrated [9] data.
Also a seperate RF with S trees is grown using the misclas-
sified data. The final result is computed by combining the
weighted results of the two RFs. A sample is calsified as
belonging to the negative class only if the combined con-
fidence is more than 0.95. This is done to neutralise the
effects of the high imbalance in the dataset.

For imputing missing values we have used KNN algorithm
with K = 33.



Table 2. Classification Results on Scaina APS Test Dataset

Classifier FPs FNs  Cost
First 542 9 9920

Second 490 12 10900
Third 398 15 11480
Our 420 14 11200

Source: The first there rows were sourced from IDA 2016 website [1]

Table 3. Preformance Measures

Classifier Precision F-measure MCC
First 0.40 0.57 0.61
Our 0.46 0.62 0.65

Source: Computed with the avaliable data.

4 Result

We have used RF with 50 trees as the primary classifier and
RF with 25 trees as the secondary RF. The RFs are con-
structed from the training samples of the dataset.To get an
estimate how well the RFs would perform on the test sam-
ples we have used 10 fold cross-validation. The average
False Positive Rate (FPR) and False Negative Rate (FNR)
obtained during cross-validation are shown in Table 1. Our
classifier also performs at par the best classifier in the test
dataset with an avaerage of 11 False Negatives (FN) and
420 False Positives (FP).The results obtained by the top 3
classifiers in the IDA Industrial Challenge is compared with
the results we obtained in Table 2. Here the cost for FPs
is taken as 10 and FNs is taken as 500. The precision, F-
measure and Matthews correlation coefficient (MCC) of the
classifier is also measured and compared with the top clas-
sifier in the challenge, as shown in Table 3. As we can see
our classifier is beter in all the three above mentioned mea-
sures. Even still these are just intermediate results and we
are currently working on improving the classifier to get bet-
ter results, more specifically an improvement in FNs count.
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