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Abstract

We begin with a simple question: what is the real need
for field vectors and differential equations while modelling
electromagnetic problems? Particularly, when all what
we can practically measure in electromagnetics are only
scalars, the traditional approach to modelling in electro-
magnetics is proving to be more mathematical than phys-
ical. In addition, the use of differential equations takes us
through an indirect path for modelling underlying physics.
We cannot directly translate continuous differential equa-
tions into numerical algorithms because computers need
discrete formulations. In this work, we discuss a direct
discrete and computationally competitive tool using only
physically measurable scalar quantities called the algebraic
topological method for modelling different electromagnetic
problems. We will also highlight areas of current and future
research in this domain.

1 Introduction

Maxwell-Heaviside equations are traditionally modelled us-
ing the differential or integral formulation. Over the years,
various computational methods were developed employing
different strategies for spatial and temporal discretisations
[1–13]. In this paper, we are presenting a radically differ-
ent non-mainstream tool called the algebraic topological
method - ATM [14–22]. Unlike many traditional methods,
in ATM we use only physically measurable scalar quantities
avoiding the use of differential equations and field vectors.
Using the mathematical tools of algebraic topology, we di-
rectly get discrete formulations for the underlying electro-
magnetic phenomena. The physically measurable quanti-
ties such as potential, current, electric & magnetic fluxes,
and charge content are defined as cochains on topologi-
cal objects such as points, lines, surfaces, and volumes.
The connection between physical quantities and their re-
spective topological objects is at the core of direct discrete
ATM formulation for modelling electromagnetic phenom-
ena [23, 24]. It is important to note that the framework of
ATM is more general and goes beyond the application to
electrodynamics. We can employ the basic ATM tools to
model also other phenomena, for example, thermoelectric,
thermodynamics, etc. We will briefly discuss the build-
ing blocks of ATM method in the following sections and

present the final ATM formulations used to model electro-
magnetic problems.

2 Chains & cochains

Consider a star-shaped domain shown in Fig. 1. For sim-
plicity, we have discretized this domain using tetrahedral
cells. Each tetrahedral cell (volume) is called a 3-simplex,
where the number 3 denotes the dimension of the simplex.
Likewise, we have 2-, 1-, and 0-simplexes in the domain
representing surfaces (triangular faces), lines, and points,
respectively. A collection of the simplexes is called as
chains. A collection of topological objects is called 0-, 1-,
2-, or 3-chain when it represents a set of points, lines, sur-
faces, or volumes, respectively as shown in Fig. 1. Mixing
of topological objects of different dimensions is not allowed
in the ATM framework. That is, a k-chain has strictly only
collection of k-simplexes.

0-chain 1-chain

2-chain 3-chain

Figure 1. Example: 0-, 1-, 2-, and 3-chains. The respec-
tive cochains are potentials, electromotances, fluxes, and
charge-contents defined on these chains.

3 Boundary & coboundary operators

The power and elegance of ATM lie in two inter-related
tools, namely boundary and coboundary operators [25]. Let
us first explain the boundary operator. The boundary oper-
ator is a mathematical tool, which operates on the under-
lying topological object, which could be lines, surfaces, or
volumes. Note that there is no boundary operation possible



on a point because the boundary of boundary does not ex-
ist [26,27]. Consider a 3-simplex represented by four nodes
1, 2, 3, and 4 as shown in Fig. 2. For example, bound-
ary operator operating on the (1-simplex) line 1-2 gives the
boundary of that line, which are nodes 1 and 2. It is worth
noticing that the boundary operator reduces the dimension-
ality of the topological objects by one. That is, when op-
erated on a surface or a volume, we get the enclosing lines
or surfaces, respectively as results. These are illustrated in
Fig. 2 using different colours. The coboundary operator
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Figure 2. Boundary operators operating on 1-simplex
(line), 2-simplex (surface), and 3-simplex (volume) gives
boundary of those simplexes shown in green, red, and blue
colours, respectively.

operates on the cochains, which are physical quantities ex-
plained in the previous section. The coboundary operator
operates on the node potentials to give the potential differ-
ence between the nodes (electromotance). When it oper-
ates on the potential difference on a chain of lines form-
ing a contour, then we get the flux passing through the sur-
face enclosed by the contour. In that sense, the coboundary
operator does the opposite of what the boundary operator
does - increases the dimensionality of the cochains by one.
For more discussion on the ATM framework, please refer
to [15, 18, 28].

4 ATM formulation for electromagnetics

The ATM toolset consisting of boundary and coboundary
operations acting on chains and cochains, respectively en-
able us to directly describe the underlying physics of elec-
tromagnetics close to experimentation. The 4+1 electro-
magnetic equations derived using the ATM framework are
given below [15, 29],

Φ(∂ s3, t̃) = 0 (1)
Ψ(∂ s̃3, t) = Qc(s̃3, t) (2)
V (∂ s2, τ̃) = Φ(s2, t̃−)−Φ(s2, t̃+) (3)
U (∂ s̃2,τ) = Q f (s̃2,τ)+Ψ(s̃2, t+)−Ψ(s̃2, t−) (4)

Q f (∂ s̃3,τ) = Qc(s̃3, t−)−Qc(s̃3, t+) . (5)

The notations used in the above equations are defined as
in [15]. Eqn. 1 and Eqn. 2 are the ATM formulations
for the Gauss magnetic and electric divergence equations,
respectively. Eqn. 3 and Eqn. 4 correspond to Faraday
and Ampere laws, respectively. Eqn. 5 corresponds to the
electric charge continuity equation. The above ATM for-
mulation for electromagnetics is directly derived from the
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Figure 3. Direct discrete ATM formulations using only
physically measurable scalar quantities and without requir-
ing differential equations and field vectors.

experimental principles using only physically measurable
quantities and completely avoiding differential equations as
shown in Fig. 3. We can use the same approach to also de-
rive the ATM formulation for other multiphysics problems
like thermodynamics, thermoelectric, quantum tunnelling,
etc.

5 Further research and applications

Accurate domain truncation techniques such as perfectly
matched layers (PML) [30–32] and absorbing boundary
conditions (ABC) [33, 34] are topics of further research
in the development of ATM. We are currently expanding
these boundary truncation techniques for ATM applica-
tions, which are available for many conformal time-domain
methods [35–43]. Some recent applications of ATM tools
in biomedicine [44], thermoelectrics [45], quantum tun-
nelling [46], radar remote sensing [47] are worth mention-
ing. The ATM is rather a non-mainstream approach and
several efforts are needed to further expand its capabili-
ties. Though the method emerges from a different start-
ing point, there is a strong analogy between differential-
calculus-based methods and ATM [48]. The numerical ac-
curacy of ATM is comparable to that of standard FDTD
method on structured grids. The full power of ATM lies in
its suitability to be used on highly unstructured inhomoge-
neous grids. Another interesting area of future research is in
the comparison of ATM with the recently developed higher-
order discontinuous Galerkin method, which will test the
limits of this tool for high precision applications [49–51].

6 Summary

The multiscale and multiphysics capabilities of ATM for-
mulation are ideal for modelling various advanced real-
world problems. Unlike traditional methods, we showed
how the ATM approach can lead to an elegant and di-
rect discrete formulations using only physically measur-
able scalar quantities for modelling different electromag-
netic problems. We have highlighted areas of current and
future research in this domain.
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