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Abstract
Last few years have witnessed an exponential upsurge in
data intensive applications over the communication net-
works. Energy saving is one of the major aspects in such
networks wherein the increased traffic load entails deploy-
ment of a large number of base stations (BSs). In this pa-
per, a BS switching scheme is proposed which exploits re-
inforcement learning (RL) for dynamic sectorization of BSs
to increase the energy efficiency of cellular networks. Fur-
thermore, previously estimated traffic statistics is exploited
through the process of transfer learning for further improve-
ment in energy savings and speeding up the learning pro-
cess. The superiority of the proposed framework is de-
picted through simulations and relevant mathematical anal-
ysis. Compared to conventional ON/OFF scheme, proposed
framework offers around 40% lower average energy con-
sumption for cellular networks with low to moderate loads.

1 Introduction
Over the past few years, there has been explosive growth
in data traffic over the communication networks. Accord-
ing to Ericsson mobility reports, there has been 52% growth
in mobile traffic between 2017-2018 [1]. Also, smartphone
traffic is expected to grow twelve times between 2015-2021
[2]. To meet such huge demands, network operators are ex-
panding their networks by deployment of large number of
base stations (BSs). Studies have reported that the energy
consumed by the BSs constitutes more than 55% of the to-
tal energy consumption of the communication systems [3].
This means that the massive growth in mobile data traffic
is being served at the expense of huge energy consumption
and increased carbon footprint. As a result of this, energy
saving in communication networks has become a central
research area and has to be handled from both ecological
and economical perspectives. In the current deployment,
the BSs are more or less active all the time with the ca-
pacity to serve peak load. The aspect of variation in the
traffic load which is a practical scenario is generally not
taken into account. Therefore, there is a need to develop an
optimal switching scheme such that the BSs are switched
ON/OFF according to the traffic load. Furthermore, the ex-
isting networks do not fully exploit the past usage statistics
for optimal operation of BSs. It is seen that there is a rea-
sonable correlation between the current data traffic and the
data traffic in the past. In case of cellular networks, this

can be attributed to the typical day-night behavior of daily
movements of the users [3]. Therefore, the past data statis-
tics is indeed significant for devising present energy saving
scheme [4]. Traffic load based dynamic BS switching has
been identified as a promising technique for energy efficient
operation of wireless access networks. This technique is
implemented in [6, 7, 8] assuming prior information about
the traffic load. In [9], RL is applied for optimal BS switch-
ing considering traffic load to follow a Poisson distribution.
In our previous works [4, 5], the scheme discussed in [9] is
used for developing energy saving technique for Wi-Fi AP
switching and two state BS switching scheme in HetNets
respectively. This work is an extension of our work pre-
sented in [4, 5]. In most of the present research works, two
state BS switching is considered in which BSs are switched
between the active mode and sleep mode according to the
traffic load. However, majority of the time, the traffic is
at moderate level with few time slots of peak traffic which
means existing schemes are not energy efficient. In this
case, learning based BS switching schemes could be quite
effective considering practical aspects of wireless networks.
In the present deployment, when a BS is active it operates
in tri-sectorized mode deploying separate power amplified
for each sector resulting in high energy consumption.

This paper presents an efficient BS switching scheme for
energy saving in cellular networks while taking into ac-
count the discussed bottlenecks. Herein, apart from an ac-
tive state at high traffic and sleep state at low traffic, the BSs
are switched to an omnidirectional state at moderate traffic
leading to a more efficient energy saving scheme. The BSs
are switched based on actor-critic (AC) RL algorithm. It is
quite intuitive that with such a scheme, the reduction in en-
ergy consumption would be maximum in case of moderate
traffic load. Furthermore, previously learned data statistics
are well exploited through transfer learning (TL). A brief
analysis on trade off between the energy consumption and
system delay is also presented.

The research problem formulation and findings in the paper
are organized as follows: The proposed work and relevant
mathematical analysis is discussed in section 2. The results
are discussed in section 3 and section 4 concludes the paper.

2 Proposed Work
To analyze three state BS switching, the AC-RL algorithm
is applied on a system containing uniformly distributed



Figure 1. Graphical representation of the base station network.

users in a region served by a set of overlapping BSs dis-
tributed randomly as shown in Figure 1.

The traffic load at a given location is considered to follow
a Poisson distribution with arrival rate λ [10, 11, 12]. A
Markov decision process (MDP) is formulated using the
traffic variations. An MDP is characterized by the tuple
M =< S,A,P,C >, where S is the state space, A is the action
space, P is the state transition probability, C is the cost func-
tion. At stage k, traffic load is at state s(k) = {s(k)1 ,s(k)2 , ...} ,
where s(k)i represent state of ith BS at stage k [4]. When
an action a(k) = {a(k)1 ,a(k)2 , ...} is taken if ak

i = 0 the ith BS is
switched OFF else it is switched ON if ak

i = 1. When a
BS is ON, if the traffic load is greater than a threshold, it
switches to tri-sectorized mode. Else, it switches to omni-
directional mode.
The system cost, C in this case is power consumption of
the system. Power consumption of an BS consist of two
parts: static power consumption which is independent of
traffic load and dynamic power consumption which varies
proportional to the traffic load. Mathematically,

C = ∑
i∈B’

[(1−qi)ρiPi +qiPi] (1)

where qi is fraction of static power consumption of ith BS,
ρi is traffic load density, Pi is total power consumption and
B′ is the set of active BSs [9].
In this work, the solution to the formulated MDP is obtained
through AC learning algorithm. AC learning algorithm is a
subclass of RL algorithms. In general, RL framework con-
sists of an agent and an environment. There is a continuous
interaction between the agent and the environment. At each
time step, the agent implements a mapping from states to
action, which is called agent’s policy. There is a reward (or
cost) associated with each action and the expected value of
the discounted cost or reward is called the state value func-
tion, which is given by,

V π (s) = Eπ

[
∞

∑
k=0

γ
kC(sk,π(sk))|s(0) = s

]
(2)

where E is the expectation operator, C(sk,π(sk)) represents
system cost at stage k which depends on state sk and action
π(sk) and γ is the discount factor having value between 0
and 1. It can be seen that the value of γk decreases as k in-
creases. This term is included to incorporate the fact that
the worth of immediate reward is greater than the later re-
wards. The goal of RL is to maximize the expected reward

(or minimize the cost)[13]. In AC algorithm, the policy
structure is called the ‘Actor’ as it selects the action and the
value function acts as a ‘Critic’ as its value determines how
good is the action taken and consequently decides the fu-
ture course of action. In the present context, the objective
of AC algorithm is to find optimal strategy π which maps
every state ‘s’ to an action π(s(k)) such that system cost, C,
is minimized. As the learning proceeds, the policy structure
tends towards optimal value and at each state optimal action
is taken such that the energy consumption is minimized [4].
The BSs are switched following the AC algorithm steps de-
scribed in [4]. In this case, there is an additional step after
action selection i.e. user association and rest of the steps
remain the same. After action selection, when certain BSs
are switched OFF, users associate themselves with the ON
BSs according to the following metric:

i∗(x) = argmax j
c(x, j)

Pj
(3)

where, c(x, j) is the upper-bound on the capacity of the link
between user located at x and jth BS calculated according
to Shannon’s theorem assuming the link between BS and
the user to follow COST-231 HATA model. Pj is the power
consumed by the jth BS. According to (1), a user located
at position x chooses to be served by a BS j if the link be-
tween them provide maximum capacity and the BS con-
sumes minimum power.
For transferring the knowledge gained from the past, the
overall policy is divided into two parts ‘native policy’ and
‘exotic policy’ [9].

poverall = (1−ζ (k))pnative +ζ (k)pexotic (4)

where, ζ (k) = θ k is transfer rate that determines fraction of
exotic policy that contributes to overall policy, θ ∈ (0,1) is
the transfer rate factor, pnative is the policy which is contin-
uously updated as the learning proceeds and pexotic is the
previously learned policy which is transferred to the cur-
rent task. In the current work, to get the exotic policy the
algorithm is executed multiple times. The learned statistics
from the previous execution is taken as exotic policy for
current execution. This work can be extended in the future
to have real data for cellular networks as well as it was done
for Wi-Fi network in [4].

2.1 Mathematical Analysis
The comparison between system energy consumption for
the conventional two state scheme and the proposed scheme
is depicted through underlying mathematical formulation
developed in this study.
Let Si be a random variable which represent the state of
ith BS in the set of available BSs. The random variable Si
is a function of BS traffic load which is in-turn a Poisson
random variable. Si is either 0 or 1 depending on whether
the BS is ON or OFF and can be described as:

Si =

{
0, when Γi < Γth
1, when Γi ≥ Γth

(5)

where, Γi is the traffic load corresponding to ith BS and Γth is
the threshold value of the traffic above which the BS has to



be switched ON. Therefore, in a two state system expected
value of power consumption of a BS can be given as,

E = f (Si = 0)P(Si = 0)+ f (Si = 1)P(Si = 1) (6)

where, f (Si = si) represents the probability that ith BS is at
state si and P(Si = si) represents power consumed by the ith

BS at state si. Now, f (Si = 0) = f (Γi < Γth) and f (Si = 1) =
f (Γi ≥ Γth) therefore,

E = f (Γi < Γth)P(Si = 0)+ f (Γi ≥ Γth)P(Si = 1) (7)

Putting P(Si = 0) = 0 and P(Si = 1) = Psectorized ,

E = f (Γi < Γth)×0+ f (Γi ≥ Γth)×Psectorized (8)

Traffic load at a given BS is the sum of traffic due to all
users associated with it. Traffic from each user follow Pois-
son distribution i.e. F(X = x) = e−λ λ x/x! (Poisson(λ )). From
the property of Poisson random variable, sum of indepen-
dent Poisson(λi) distribution is a Poisson(∑λi) distribution.
Let ∑λi = λ and Γi = x therefore,

f (Γi ≥ Γth) =
∞

∑
x=Γth

e−λ
λ

x/x! (9)

Therefore,
E = Psectorized × [

e−λ λ Γth

Γth!
+

e−λ λ Γth+1

(Γth +1)!
· · · ] (10)

In the three state model presented in this work, at a par-
ticular instance of time a given BS can be either in active
mode, sleep mode or omnidirectional mode. Hence, in this
case the random variable Si can be defined as,

Si =

{ 0, when Γi < Γth
o, when Γth ≤ Γi ≤ n×Γth
1, when Γi ≥ n×Γth

(11)

where, n is a scalar such that n > 1 and o represent the
omnidirectional state. In this case, the expected value of
power consumption of a BS would be,

Eomni = f (Si = 0)P(Si = 0)+ f (Si = 1)P(Si = 1)+

f (Si = o)P(Si = o) (12)

Eomni = f (Γi < Γth)P(Si = 0)+ f (Γth ≤ Γi ≤ n×Γth)

P(Si = o)+ f (Γi > n×Γth)P(Si = 1) (13)

Eomni = Pomni×

[
e−λ λ Γth

Γth!
+

e−λ λ Γth+1

(Γth +1)!
· · ·+ e−λ λ n×Γth

n×Γth!

]
+

Psectorized ×

[
e−λ λ (n+1)×Γth

(n+1)×Γth!
+ · · ·

]
(14)

In (10) entire range of values are multiplied by Psectorized
while in (14) values for which Γi > n×Γth are multiplied by
Psectorized and rest by Pomni. As Pomni < Psectorized , therefore
Eomni < E . Hence, the expected value of power consump-
tion for omnidirectional mode is always less than or equal
to the sectorized mode.

3 RESULTS AND DISCUSSIONS
To evaluate the performance improvement through the pro-
posed scheme the AC algorithm is applied on the system
under two scenarios : a) the BSs are switched between
active mode and sleep mode according to traffic load b)
BSs are switched between active, omnidirectional and sleep

modes based on traffic load. As the traffic load is consid-
ered to follow a Poisson(λ ) distribution. Higher the value
of λ , higher would be the traffic load. Simulations are per-
formed for varied traffic load. Figure 2 depicts the variation
of mean differential improvement with λ i.e. traffic load.
Mean differential improvement is the average of difference
between energy consumption in a two state model and the
proposed three state model. The improvement is highest
when the load is moderate as the fraction of BSs going into
low power omnidirectional mode would be highest in this
case.
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Figure 2. Variation of Mean differential improvement with re-
spect to traffic load.

Further improvement in performance can be achieved by
exploiting the past data statistics and using the concept of
transfer learning discussed in previous section. This im-
provement in performance is depicted in Figure 3 for mod-
erate load. The performance is measured in terms of a met-
ric termed as ‘Energy Consumption Ratio (ECR)’ which is
the ratio of energy consumption of the system on a partic-
ular instant of learning process to the energy consumption
of the system when there is no learning and all BSs are ON
at that instant. The learning process proceeds in k stages
and each stage is termed as an Episode. It is observed that
the proposed three state BS switching in an AC framework
leads to 15% additional reduction than the two state switch-
ing scheme. Furthermore, the application of transfer learn-
ing to this scheme leads to an overall reduction 40% which
is a quite significant amount. Power consumption of a BS
consist of two parts: static power consumption which is in-
dependent of traffic load and dynamic power consumption
which varies proportional to the traffic load [4]. Further-
more, a finite delay is incurred in transmitting the overall
traffic associated with all the users in the system. To ana-

Figure 3. Reduction in system energy consumption at moderate
traffic depicted through ECR curve.



lyze the trade off between system delay and energy saving,
the system cost described in [4] is modified as,

C = ∑
i∈A’

[(1−qi)ρiPi +qiPi]+ ςCd (15)

where, qi is fraction of static power consumption of ith BS,
ρi is traffic load density, Pi is total power consumption and
A′ is the set of active BSs. Cd is the delay equivalent cost
given by :

Cd = ∑
i∈A’

ρi

(1−ρi)
(16)

As discussed in [11], minimizing Cd is equivalent to min-
imizing the average delay. A′ is the set of active BSs and
ς is a scalar that determines the weightage which is to be
given to the delay equivalent cost reduction [9]. The varia-
tion of mean ECR with delay importance parameter (ς ) for
the proposed scheme under low, moderate and high traffic
is depicted in Table 1 and Figure 4. The simulations are
performed by varying the value of ς between 500 and 3000.
For each value of ς , the mean ECR and delay are tabulated.
Table 1 depicts that a higher value of ς corresponds to a
lower delay and a higher energy consumption. This is due
to the fact that higher value of ς amounts to a greater impor-
tance to delay equivalent cost reduction. If there is a lower
tolerance to delay, lesser number of BSs would be turned
OFF and hence the energy consumption would be greater
which is apparent from Table 1. Therefore, to ensure the
required quality of service it is necessary to take care of
the trade-off between the system energy consumption and
delay.

Table 1. Mean ECR variation with Delay importance parameter
Delay Importance
Parameter 500 1000 1500 2000 2500 3000

High Traffic Mean ECR 0.65 0.70 0.71 0.78 0.85 0.91
Average Delay 1.31 0.70 0.47 0.39 0.28 0.26

Moderate Traffic Mean ECR 0.57 0.72 0.74 0.86 0.93 1
Average Delay 1.11 0.74 0.49 0.41 0.36 0.33

Low Traffic Mean ECR 0.58 0.62 0.73 0.75 0.85 1.1
Average Delay 1.16 0.62 0.48 0.37 0.34 0.33

Figure 4. Mean ECR variation with Delay importance parameter
4 Conclusion
This paper presents an important analytical study on energy
saving in cellular networks. RL is used to devise an opti-
mal three state BS switching scheme in cellular networks.
The scheme results in significant reduction in the energy
consumption of the system. A further improvement in the
energy saving is achieved by using the concept of knowl-
edge transfer. The simulated results are well supported by

the developed mathematical formulation pertaining to the
research problem.
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